diff options
Diffstat (limited to 'Thermodynamics,_Statistical_Thermodynamics,_&_Kinetics/Chapter18.ipynb')
-rwxr-xr-x | Thermodynamics,_Statistical_Thermodynamics,_&_Kinetics/Chapter18.ipynb | 407 |
1 files changed, 407 insertions, 0 deletions
diff --git a/Thermodynamics,_Statistical_Thermodynamics,_&_Kinetics/Chapter18.ipynb b/Thermodynamics,_Statistical_Thermodynamics,_&_Kinetics/Chapter18.ipynb new file mode 100755 index 00000000..f1741f74 --- /dev/null +++ b/Thermodynamics,_Statistical_Thermodynamics,_&_Kinetics/Chapter18.ipynb @@ -0,0 +1,407 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:739f6a7aa866a8931c051faa7d51c479c27f099d05036b55ada1468f0458424b"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 18: Elementary Chemical Kinetics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example Problem 18.2, Page Number 451"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log\n",
+ "from sympy import *\n",
+ "\n",
+ "#Variable Declaration\n",
+ "Ca0 = [2.3e-4,4.6e-4,9.2e-4] #Initial Concentration of A, M\n",
+ "Cb0 = [3.1e-5,6.2e-5,6.2e-5] #Initial Concentration of B, M\n",
+ "Ri = [5.25e-4,4.2e-3,1.68e-2] #Initial rate of reaction, M\n",
+ "\n",
+ "#Calculations\n",
+ "alp = log(Ri[1]/Ri[2])/log(Ca0[1]/Ca0[2])\n",
+ "beta = (log(Ri[0]/Ri[1]) - 2*log((Ca0[0]/Ca0[1])))/(log(Cb0[0]/Cb0[1]))\n",
+ "k = Ri[2]/(Ca0[2]**2*Cb0[2]**beta)\n",
+ "\n",
+ "#REsults\n",
+ "print 'Order of reaction with respect to reactant A: %3.2f'%alp\n",
+ "print 'Order of reaction with respect to reactant A: %3.2f'%beta\n",
+ "print 'Rate constant of the reaction: %4.3e 1./(M.s)'%k"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Order of reaction with respect to reactant A: 2.00\n",
+ "Order of reaction with respect to reactant A: 1.00\n",
+ "Rate constant of the reaction: 3.201e+08 1./(M.s)\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example Problem 18.3, Page Number 457"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log\n",
+ "from sympy import *\n",
+ "\n",
+ "#Variable Declaration\n",
+ "t1by2 = 2.05e4 #Half life for first order decomposition of N2O5, s\n",
+ "x = 60. #percentage decay of N2O5\n",
+ "\n",
+ "#Calculations\n",
+ "k = log(2)/t1by2\n",
+ "t = -log(x/100)/k\n",
+ "\n",
+ "#REsults\n",
+ "print 'Rate constant of the reaction: %4.3e 1/s'%k\n",
+ "print 'Timerequire for 60 percent decay of N2O5: %4.3e s'%t"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Rate constant of the reaction: 3.381e-05 1/s\n",
+ "Timerequire for 60 percent decay of N2O5: 1.511e+04 s\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example Problem 18.4, Page Number 457 Incomplete"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log\n",
+ "from sympy import *\n",
+ "\n",
+ "#Variable Declaration\n",
+ "t1by2 = 5760 #Half life for C14, years\n",
+ "\n",
+ "\n",
+ "#Calculations\n",
+ "k = log(2)/t1by2\n",
+ "t = -log(x/100)/k\n",
+ "\n",
+ "#REsults\n",
+ "print 'Rate constant of the reaction: %4.3e 1/s'%k\n",
+ "print 'Timerequire for 60 percent decay of N2O5: %4.3e s'%t"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example Problem 18.5, Page Number 463"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log\n",
+ "\n",
+ "#Variable Declaration\n",
+ "kAbykI = 2.0 #Ratio of rate constants\n",
+ "kA = 0.1 #First order rate constant for rxn 1, 1/s \n",
+ "kI = 0.05 #First order rate constant for rxn 2, 1/s \n",
+ "#Calculations\n",
+ "tmax = 1/(kA-kI)*log(kA/kI)\n",
+ "\n",
+ "#Results\n",
+ "print 'Time required for maximum concentration of A: %4.2f s'%tmax"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Time required for maximum concentration of A: 13.86 s\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example Problem 18.7, Page Number 467"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log\n",
+ "\n",
+ "#Variable Declaration\n",
+ "T = 22.0 #Temperature of the reaction,\u00b0C\n",
+ "k1 = 7.0e-4 #Rate constants for rxn 1, 1/s\n",
+ "k2 = 4.1e-3 #Rate constant for rxn 2, 1/s \n",
+ "k3 = 5.7e-3 #Rate constant for rxn 3, 1/s \n",
+ "#Calculations\n",
+ "phiP1 = k1/(k1+k2+k3)\n",
+ "\n",
+ "#Results\n",
+ "print 'Percentage of Benzyl Penicillin that under acid catalyzed reaction by path 1: %4.2f '%(phiP1*100)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Percentage of Benzyl Penicillin that under acid catalyzed reaction by path 1: 6.67 \n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example Problem 18.8, Page Number 468"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from numpy import arange,array,ones,linalg,log, exp\n",
+ "from pylab import plot,show\n",
+ "\n",
+ "\n",
+ "#Variable Declaration\n",
+ "T = array([22.7,27.2,33.7,38.0])\n",
+ "k1 = array([7.e-4,9.8e-4,1.6e-3,2.e-3])\n",
+ "R = 8.314 \n",
+ "\n",
+ "#Calculations\n",
+ "T = T +273.15\n",
+ "x = 1./T\n",
+ "y = log(k1)\n",
+ "A = array([ x, ones(size(x))])\n",
+ "# linearly generated sequence\n",
+ "[slope, intercept] = linalg.lstsq(A.T,y)[0] # obtaining the parameters\n",
+ "\n",
+ "# Use w[0] and w[1] for your calculations and give good structure to this ipython notebook\n",
+ "# plotting the line\n",
+ "line = w[0]*x+w[1] # regression line\n",
+ "#Results\n",
+ "plot(x,line,'-',x,y,'o')\n",
+ "xlabel('1/T, $K^{-1}$')\n",
+ "ylabel('log(k)')\n",
+ "show()\n",
+ "Ea = -slope*R\n",
+ "A = exp(intercept)\n",
+ "print 'Slope and intercept are, %6.1f and %4.2f'%(slope, intercept)\n",
+ "print 'Pre-exponential factor and Activation energy are %4.2f kJ/mol and %4.2e 1/s'%(Ea/1e3, A)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAZoAAAEVCAYAAADZ4CNuAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XucXdP9//HXZzKRuHxdSkgjIQwhdwmREJcJSROiqH6D\nICLaqtskCIqoTqsl6ppEvupSLf2R0FAtk4Q8cFIUFZlEbi6Zqta16hKUpIn5/P5YJ4xxJplJZu91\nzpn38/E4j56z99p7f2Z387HWXvuzzd0RERFJSknsAEREpLgp0YiISKKUaEREJFFKNCIikiglGhER\nSZQSjYiIJCpaojGzCjNbZmaLzeyqBtoMM7MXzewVM/tR2jGKiMjGK41xUDMbBBwJ9HL31WbWLkeb\nVsCNwGDgDeA5M/uTuy9LN1oREdkYsXo0ZwBXuvtqAHd/N0ebfYHl7v73bLvpwFEpxigiIs0gVqLZ\nHTjIzJ4xs4yZ7ZOjzY7AP+v8fj27TERECkhiQ2dmNgdon2PVhOxxt3H3AWbWD7gX2LVeO9XGEREp\nAoklGncf0tA6MzsDuD/b7jkzqzWzbd39vTrN3gA61fndidCrybU/JSURkQ3g7pb0MWINnT0AHAJg\nZl2ATeolGYB5wO5m1tnMNgGOA/7U0A7dXZ9m+vzkJz+JHkOxfHQudT7z+ZOWWInmdmBXM1sETANO\nBjCzDmZWBeDua4CzgYeBpcA9rhlnIiIFJ8r0Zg+zyEblWP4mMLzO71nArBRDExGRZqbKAPI15eXl\nsUMoGjqXzUvnszBZmuN0STEzL4a/Q0QkTWaGF/FkABERaSGUaEREJFFKNCIikiglGhERSZQSjYiI\nJEqJRkREEqVEIyIiiVKiERGRRCnRiIhIopRoREQkUUo0IiKSKCUaERFJlBKNiIgkSolGREQSpUQj\nIiKJUqIREZFEKdGIiEiilGhERCRRSjQiIpIoJRoREUmUEo2IiCQqaqIxswozW2Zmi83sqhzrO5nZ\n42a2JNtmbIw4RURkw5XGOrCZDQKOBHq5+2oza5ej2WrgXHdfYGZbAM+b2Rx3X5ZGjO+9B2vWwA47\npHE0EZHiFLNHcwZwpbuvBnD3d+s3cPe33X1B9vsnwDKgQ1oBPvYY9OwJN90En3+e1lFFRIpLzESz\nO3CQmT1jZhkz22ddjc2sM9AHeDaF2AAYMSIkm7vvhv32g+efT+vIIiLFI9GhMzObA7TPsWpC9tjb\nuPsAM+sH3Avs2sB+tgBmAOOyPZuvqays/OJ7eXk55eXlGxV71ZwqJt89mVW+is12a8M+249l+PDh\njBgBl18OW2+9UbsXEUldJpMhk8mkflxz99QPCmBms4CJ7j43+3s50N/d36vXrjXwEDDL3W9oYF/e\nnH9H1Zwqxk0dR02fmi+WlVWXcfmoSWQeGc6DD8I118DIkWDWbIcVEUmVmeHuif9bLObQ2QPAIQBm\n1gXYJEeSMeDXwNKGkkwSJt89+StJBqCmTw13VE3h5pvh/vvhl7+EwYPhxRfTikpEpDDFTDS3A7ua\n2SJgGnAygJl1MLOqbJuBwEnAIDOrzn6GJR3YKl+Vc/nK2pUADBgA8+bBkUfCAQfAhAnw6adJRyUi\nUpiiJRp3X+3uo9y9p7vv7e6Z7PI33X149vuT7l7i7nu5e5/sZ3bSsbWxNjmXty1p+8X30lIYNw5e\neAFqaqB7d3jooaQjExEpPKoMkMPYE8ZSVl32lWVl88uoGFnxtbYdOsD06XDLLXDeefCd78A//pFW\npCIi+S/aZIDm1NyTASBMCJgybQora1fStqQtFSMrGD5k+Dq3Wbky3LuZPBkuvBDOPRdat27WsERE\nmk1akwGUaBJQUwNnnx16NjfdBAcdFDsiEZGvU6JpgnxLNADuYXbaOefAIYfA1VfD9tvHjkpE5Est\nYXpzUTOD734Xli6Fdu2gRw+4+WaorY0dmYhIutSjSckLL8AZZ4QinTfdBH37xo5IRFo69WiKTK9e\n8MQTcPrpcPjhMHYsrFgROyoRkeQp0aSopATGjIElS+Czz6BbN5g2LdzPEREpVho6i+jpp8Nw2nbb\nwdSpsMcesSMSkZZEQ2ctwH77hVI2RxwBAwfCj38cejoiIsVEiSay0tIwBXrhQnjppVDKZubM2FGJ\niDQfDZ3lmYcfDg979uwJkyZBp06xIxKRYqWhsxZq6FBYtAh694Y+fcKDnqtXx45KRGTDqUeTx5Yv\nD72bN94Iz94ccEDsiESkmKgETRMUa6KBMPV5xoxQoHPIkFC0s1272FGJSDHQ0JkAoZTNiBGwbBl8\n4xthssAtt6iUjYgUDvVoCszCheHZm9raMJzWp0/siESkUKlHIzn17g1PPgk/+AEMGxamRn/0Ueyo\nREQapkRTgEpK4HvfC6VsPvkEunaFe+5RKRsRyU8aOisCTz0VhtN22CGUsunSJXZEIlIINHQmjTZw\nIDz/PBx2GOy/P1x2mUrZiEj+UKIpEq1bw3nnwYIFYYZajx4wa1bsqERENHRWtGbPDg977rUX3HAD\ndOwYOyIRyTdFP3RmZhVmtszMFpvZVeto18rMqs3swTTjK3TDhoVSNt27h2Rz7bUqZSMicURJNGY2\nCDgS6OXuPYBr1tF8HLAUUJeliTbdFH760/Dem4cfhr33DhMHRETSFKtHcwZwpbuvBnD3d3M1MrOO\nwOHAbUDi3btitfvuIdFceikcdxyceir8+9+xoxKRliJWotkdOMjMnjGzjJnt00C764ELABVc2Uhm\ncOyxsHQpbLVVeI30rbeqlI2IJK80qR2b2RygfY5VE7LH3cbdB5hZP+BeYNd62x8B/Mvdq82sfH3H\nq6ys/OJ7eXk55eXr3aRF2nJLuP56GD06PHvzm9+EUja9e8eOTESSlslkyGQyqR83yqwzM5sFTHT3\nudnfy4H+7v5enTZXAKOANUBbYEvgPnc/Ocf+NOtsA9TWwq9/DRMmwIknhvs5W24ZOyoRSUuxzzp7\nADgEwMy6AJvUTTIA7n6Ju3dy912A44HHciUZ2XAlJaFm2pIlsGJFGE67916VshGR5hUr0dwO7Gpm\ni4BpwMkAZtbBzKoa2Eb/+ktIu3Zw++0wfTpcfnmYGv3KK43fvmpOFUPHDKX8lHKGjhlK1ZyG/i8U\nkZZID2zKV6xeDZMnw5VXhgc+L7oI2rZtuH3VnCrGTR1HTZ+aL5aVVZcx6axJDB8yPIWIRWRDFfvQ\nmeSp1q1h/Hiorg4PfPboEaZGN2Ty3ZO/kmQAavrUMGXalIQjFZFCoUQjOXXqBPfdF3o3Z54Z3vL5\nxhtfb7fKV+XcfmXtyoQjFJFCoUQj63T44bB4cXjnTe/ecN11sGbNl+vbWJuc27UtWcd4m4i0KEo0\nsl6bbgo/+xn85S8wc+ZXS9mMPWEsZdVlX2lfNr+MipEVESIVkXykyQDSJO7hbZ7jx4f330ycCM9W\nVzFl2hRW1q6kbUlbKkZWaCKASAFIazKAEo1skBUrwgvWpk+HK66AMWPCczkiUjiUaJpAiSae6upQ\nyqZVq1DKplev2BGJSGNperMUhD59wr2b0aNh8ODwls+PP44dlYjkEyUa2WglJXDaaWF22gcfhFI2\nM2aolI2IBBo6k2b3xBNhOK1jR7jxRthtt9gRiUguGjqTgnXggeHezaGHwoABoSr0Sj2/KdJiKdFI\nIlq3hgsugPnzYeFC6NkTHnkkdlQiEoOGziQVVVVQUQH9+oXqAjvuGDsiEdHQmRSV4cPDZIHddw+l\nbK6//qulbESkeKlHI6l76aVQqPO998KzN/vtFzsikZZJD2w2gRJN4XEPVQXGjw+9nYkTYdttY0cl\n0rJo6EyKmhmMHAnLloWind26hbd81tbGjkxEmpt6NJIX5s8Pz960bh2G03r2jB2RSPFTj0ZalL59\nQymbk04Kz9+cf75K2YgUCyUayRutWsHpp4fZaf/+dxhOu+8+lbIRKXQaOpO89ec/h+G0nXYKpWzK\nyta/jYg0nobOpMU76KBQymbQIOjfHy6/HFatih2ViDSVEo3ktU02gQsvhOefDxMGevaEOXNiRyUi\nTREt0ZhZhZktM7PFZnZVA222NrMZ2XZLzWxA2nFKfth5Z/jDH0L5mtNOg+OPhzffjB2ViDRGlERj\nZoOAI4Fe7t4DuKaBppOAme7eFegFLEspRMlTRxwBS5aE+zW9esGkSSplI5LvokwGMLN7gV+5+2Pr\naLMVUO3uuzZif5oM0AK9+GIoZfPBB+HZmwHq74o0SbFPBtgdOMjMnjGzjJntk6PNLsC7ZvYbM5tv\nZrea2WYpxyl5bM894dFHw+sIjjkGfvhDeP/92FGJSH2lSe3YzOYA7XOsmpA97jbuPsDM+gH3AvV7\nLqVAX+Bsd3/OzG4ALgIuy3W8ysrKL76Xl5dTXl6+sX+CFAAzOOEEOPxw+PGPw7M3EyfC6NFhnYh8\nKZPJkMlkUj9urKGzWcBEd5+b/b0c6O/u79Vp0x542t13yf4+ALjI3Y/IsT8NnQkQZqedfjq0bRuG\n03r0iB2RSP4q9qGzB4BDAMysC7BJ3SQD4O5vA//MrgcYDCxJNUopOHvvDc88E3o5gwaFYbVPPokd\nlUjLFivR3A7samaLgGnAyQBm1sHMquq0qwDuMrOFhFlnV6QeqRScVq1CRYHFi+Gdd8Jw2v33q5SN\nSCzrHDozs77ASOAgoDPgwGvAn4G73b06hRjXS0Nnsi5z54bEs8suMGUK7LreeYwiLUP0oTMzmwmM\nB+YBxwM7E2aCjQSeB86v1/sQyUsHHwwLFoSSNvvuCz//uUrZiKSpwR6Nme3g7u+sc2Oz7d39X4lE\n1gTq0UhjvfYajBsXXrg2dSoMHhw7IpF4ovdo1iYZMzus/jozOz3bJnqSEWmKnXeGBx6Aa66B738/\nvOXzrbdiRyVS3BozGeDHZnbo2h9mdiFwdHIhiSTv298OpWx22SWUspkyRaVsRJKy3udozGw74CHg\nAmAYsCcw0t3/m3x4jaOhM9kYy5aFUjYrVoRnb/r3jx2RSDrSGjpr1AObZrY98ChhYsCp+fZvdSUa\n2VjucNdd4bmbo46CK6+EbbaJHZVIsqLfozGzT8zsYzP7GKgBugAjgI/M7KOkAxNJkxmcdFLo3bRq\nBV27wh136NkbkeagVzmL5DBvXihls9lmYTite/fYEYk0v3zo0TSmPL/e4i5FaZ994NlnwwvWysvD\nWz5VykZkw6zrOZp7gM2BPxHuzbwFGPBNYB/Ci8s+dvfj0wm1YerRSJLefjvcu5k7N7xo7eijVRla\nikNeTAYws90IVQEGEioDQChB8yQwzd3/lnSAjaFEI2l4/PEwO62sLEyH3mWX2BGJbJy8SDSFQolG\n0vLf/8K114bPuefC+edDmzaxoxLZMHmTaMzsu4RimnWtABblS2UAJRpJ29//DmPHwssvw//9Hxxy\nSOyIRJounxJNFbAf8DjhHs3BwHxCgc2fufudSQe5Pko0Essf/xgSzgEHhF5O+1zvlBXJU9FnndXR\nGujq7t9192OAboQeTn/gR0kGJ5LvjjoKli6FnXaCnj3hxhvh889jRyWSXxqTaDrVq+L8r+yy94C8\nKUMjEsvmm4dKAnPnwowZ4VUEzz0XOyqR/NGYRPO4mVWZ2WgzO4Uw3TljZpsDHyYanUgB6dYtzEw7\n5xw48sgwQ+2DD2JHJRJfYxLN2cBvgL2A3sAdwJnu/h93H5RkcCKFxgxGjQrDaRCSz513qpSNtGyN\nLarZHuiX/flsvsw2W0uTASRfPfdceI305puH2WkqZSP5JG8mA5jZscCzhIKaI4C/mtmIpAMTKQb9\n+oVSNiNGhFI2F10E//lP7KhE0tWY6c0vAIPX9mLMrB3wqLv3SiG+RlGPRgrB22/D+PHw1FOhlM1R\nR8WOSFq6fHqOZhHQa+2/yc2sBFjo7j2TDq6xlGikkDz2WJgo0KULTJ4MnTvHjkhaqrwZOgNmAw+b\n2SlmNgaYCcxKNiyR4nXIIbBwIQwYEKpEX3FFKG0jUqwa06Mx4BjgAMKDmk+4+x82+sBmFcCZwOdA\nlbt/7eFPM7sYOAmoBRYBY9x9VY526tFIQXr1VaiogJqaMFlgkOZxSoryZugskYOaDQIuAQ5399Vm\n1s7d363XpjPwGKEqwarsawtmuvsdOfanRCMFyz2Ushk3Dg48EK65RqVsJB3Rh87qvso5x2djX+V8\nBnClu68GqJ9ksj4CVgObmVkpsBnwxkYeVyTvmIV33CxdCjvuGErZTJ2qUjZSPGL1aKqBPwLDgJXA\n+e4+L0e704Brgc+Ah919VAP7U49GisaSJWGywH/+A7/6VbiPI5KEtHo0pUnt2MzmALkGACZkj7uN\nuw8ws37AvcCu9bYvA84BOhNeS/B7MzvR3e/KdbzKysovvpeXl1NeXr7xf4RIBN27QyYDv/sdfPvb\ncMwx8ItfwNZbx45MCl0mkyGTyaR+3Fg9mlnARHefm/29HOifLdS5ts1xwBB3/3729yhggLuflWN/\n6tFIUXr/fZgwAR54AK6+Gk48Ua+RluYT/R5Nwh4ADgEwsy7AJnWTTNaLwAAz2zQ7820wsDTdMEXi\n+sY34KabQqK57rowNXrZsthRiTRNrERzO7Br9mHQacDJAGbWIfuiNdx9IXAnMA94IbvdLRFiFYmu\nf/9QN+2YY+Cgg+Dii+HTT2NHJdI4UYbOmpuGzqQleeutUMrmL38JlQWOPDJ2RFKoivo5muamRCMt\n0aOPhtlpe+4ZEs7OO8eOSApNsd+jEZGNdOih8MILoUL03nvDxIkqZSP5ST0akSLwt7+FUjavvhpK\n2Wh2vzSGhs6aQIlGJJSyeeCBUMrm4INDKZsddogdleQzDZ2JSJOYwXe+E0rZfPOboZTNTTeplI3E\npx6NSJFavDhMFli5MiScvfeOHZHkG/VoRGSj9OgBc+eGZDN8OJx9Nnz4YeyopCVSohEpYmZwyilh\nOG3NGujWDe66K9zPEUmLhs5EWpBnnoEzzoBttgmz0/bcM3ZEEpOGzkSk2Q0YEErZHH10eMnahAkq\nZSPJU6IRaWFKS2HsWFi4MDx/0707PPRQ7KikmGnoTKSFmzMHzjorJJxJk2CnnWJHJGnR0JmIpGLI\nkFDKpm/f8Lnqqi9L2VTNqWLomKGUn1LO0DFDqZpTFTdYKUjq0YjIF2pqQimb116DUd+r4rY/j6Om\nT80X68uqy5h01iSGDxkeMUppLipB0wRKNCLNxx3+8Ac44YKhrDr5ka+tH/raUGbfPjtCZNLcNHQm\nIlGYhRes9dt/Vc71K2tXphyRFDolGhHJabPSNjmXty1pm3IkUuiUaEQkp7EnjKWsuuwry0ruL6N0\nRQUrVkQKSgpSaewARCQ/rb3hP2XaFFbWrqRtSVtGX1bB4w8Pp1u38BqC448PQ20i66LJACLSZE8/\nHUrZbLcdTJ0Ke+wROyLZEJoMICJ5a7/9YN48OOIIGDgQLr0UPvssdlSSr5RoRGSDlJbCOeeEUjbL\nl4fKAlV6nlNy0NCZiDSLRx4JpWx69oQbblApm0JQ1ENnZjbdzKqzn1fNrLqBdsPM7EUze8XMfpR2\nnCLSeN/6FixaBHvtFUrZXH01rF4dOyrJB9F7NGZ2DfChu/+83vJWwEvAYOAN4DlgpLsvy7EP9WhE\n8sjy5eGNnq+/Hl4jfeCBsSOSXIq6R7OWmRlwLDAtx+p9geXu/nd3Xw1MB45KMz4R2TC77QazZkFl\nJZxwQnjL57vvxo5KYok9GeBA4B13r8mxbkfgn3V+v55dJiIFwAz+93/Da6S33TZMFrj5ZqitjR2Z\npC2xBzbNbA7QPseqS9z9wez3kcDdDeyiSWNhlZWVX3wvLy+nvLy8KZuLSEL+53/g2mth9Ojw7M3t\nt8OvfgV9+sSOrOXJZDJkMpnUjxvtHo2ZlRJ6KX3d/c0c6wcAle4+LPv7YqDW3a/K0Vb3aEQKQG0t\n/Pa3cPHFoarAz34GW20VO6qWqyXcoxkMLMuVZLLmAbubWWcz2wQ4DvhTatGJSLMrKYFTTw3DaZ9+\nCt26wfTp4dUEUrxiJprjqDcJwMw6mFkVgLuvAc4GHgaWAvfkmnEmIoVn223h1lvh97+HK68MU6Nf\nfjl2VJKU6NObm4OGzkQK15o1MGUK/OIX4R7OJZfAppvGjqplaAlDZyIilJbCueeGUjYvvQQ9eoSp\n0VI81KMRkbwye3Z42LN371DKplOn2BEVL/VoRKRFGjYMFi+GXr3CFOhrrlEpm0KnHo2I5K1XXgm9\nmzffDKVsDjggdkTFJa0ejRKNiOQ1d5gxI9zH+da34KqroF272FEVBw2diYgQStmMGBGevdl661DK\n5pZbVMqmkKhHIyIFZeHCMA3aPQyn7bVX7IgKl3o0IiI59O4NTz4J3/seDB0a3vL50Uexo5J1UaIR\nkYJTUgLf/z4sWQIffxxK2dxzj0rZ5CsNnYlIwXvqqTCc1r493HgjdOkSO6LCoKEzEZFGGjgQnn8+\nPIOz//5w2WXw2Wexo5K1lGhEpCi0bg3nnQcLFsCyZdCzZ6gyIPFp6ExEitKsWeFhzz59Qimbjh1j\nR5R/NHQmIrIRDjsslLLp3j1Mgb72WpWyiUU9GhEpeq+8AmedBW+/HZ69GTgwdkT5QSVomkCJRkTW\nxz28aO2888LzN1ddBdttFzuquDR0JiLSjMzg2GNDKZsttwxDarfdplI2aVCPRkRapAULwrM3ZmE4\nrXfv2BGlTz0aEZEE7bVXeNBzzBgYMiQMqX38ceyoipMSjYi0WCUl8IMfhFI2H34IXbvCvfeqlE1z\n09CZiEjWk0+G4bQOHWDqVNhtt9gRJUtDZyIiKTvgAJg/PwylDRgAlZWwcmXsqAqfEo2ISB2tW8P5\n50N1NSxaBD16wMMPx46qsEUbOjOz6cAe2Z9bAx+6e596bToBdwLbAw7c4u6Tc+xLQ2cikoiZM6Gi\nAvr2DaVsdtwxdkTNp+iHztz9eHfvk00u92U/9a0GznX37sAA4Cwz65pmnCLSsh1+eChl07VrmAJ9\n3XWwZk3sqApL9MkAZmbAa8Agd69ZT9sHgCnu/mi95erRiEjiXnoplLJ5993w7M3++8eOaOMUfY+m\njgOBdxqRZDoDfYBnU4hJRORr9tgD5syBiy+GESPCWz7fey92VPmvNMmdm9kcoH2OVZe4+4PZ7yOB\nu9ezny2AGcA4d/8kV5vKysovvpeXl1NeXr4BEYuIrJsZHH98qA592WXhNdJXXBEe/CzJh/90X4dM\nJkMmk0n9uFGHzsysFHgd6OvubzbQpjXwEDDL3W9ooI2GzkQkivnzw7M3paVhOK1Xr9gRNV5LGTob\nDCxbR5Ix4NfA0oaSjIhITH37wtNPw+jRMHgwjB+vUjb1xU40xwHT6i4wsw5mVpX9ORA4CRhkZtXZ\nz7C0gxQRWZeSEjjttDA77f33w3DajBkqZbNW9FlnzUFDZyKST554IgyndewIN96Yv6VsWsrQmYhI\n0TnwwFBZ4NBDQymbn/60ZZeyUaIREUlA69ZwwQVhssDChdCzJzzySOyo4tDQmYhICqqq4NQzqrDt\nJrPLHqvYsm0bxp4wluFDhkeLKa2hs0SfoxERkaxNqthir3H8be8a3skuqpkanlOPmWzSoB6NiEgK\nho4ZyiOdvz52NvS1ocy+fXaEiDQZQESkqKzyVTmXr6wt/lkCSjQiIiloY21yLm9b0jblSNKnRCMi\nkoKxJ4ylrLrsK8vK5pdRMbIiUkTp0T0aEZGUVM2pYsq0KaysXUnbkrZUjKxoEbPOlGhERFooTQYQ\nEZGioEQjIiKJUqIREZFEKdGIiEiilGhERCRRSjQiIpIoJRoREUmUEo2IiCRKiUZERBKlRCMiIolS\nohERkUQp0YiISKKivMrZzKYDe2R/bg186O59GmjbCpgHvO7u304pRBERaSZRejTufry798kml/uy\nn4aMA5YCKs+ckkwmEzuEoqFz2bx0PgtT1KEzMzPgWGBaA+s7AocDtwGJl7KWQP8wNx+dy+al81mY\nYt+jORB4x91rGlh/PXABUJteSCIi0pwSu0djZnOA9jlWXeLuD2a/jwTubmD7I4B/uXu1mZUnE6WI\niCQt2hs2zawUeB3o6+5v5lh/BTAKWAO0BbYE7nP3k3O01f0bEZENUNSvcjazYcCP3H1QI9oeDJyv\nWWciIoUn5j2a46g3CcDMOphZVQPt1WsRESlA0Xo0IiLSMkTr0ZjZMDN70cxeMbMfNdBmcnb9QjPr\ns75tzezybNsFZvaomXXKLh9iZvPM7IXs/w6qs83eZrYou69JSf7NScqj85nJ7qs6+9kuyb87CSmf\ny33rnKsXzOy4Otvo2mze81nw1yakez7rrN/JzD4xs/F1ljX++nT31D9AK2A50BloDSwAutZrczgw\nM/u9P/DM+rYF/qfO9hXAbdnvewHts9+7E6oMrG33V2Df7PeZwLAY56SIzufjhAke0c9LgZzLTYGS\n7Pf2wL+BVro2EzmfBX1txjifdZbNAO4BxtdZ1ujrM1aPZl9gubv/3d1XA9OBo+q1ORK4A8DdnwW2\nNrP269rW3T+us/0WhIsMd1/g7m9nly8FNjWz1mb2TcIJ/mt23Z3A0c38t6YhL85nnbaF/HBt2ufy\nM3df+5zYpsAKd/9c12bzns86bQv52oSUzyeAmR0N/I3wz/raZU26PmMlmh2Bf9b5/Xp2WWPadFjX\ntmb2CzP7BzAamJjj2N8Fns+e6B2z26/1Ro44CkG+nM+17sgOTVza1D8kD6R+LrPDPUuAJcB5dY6h\na7P5zudahXxtQsrn08y2AC4EKnMco9HXZ6xE09gZCE3+rw93n+DuOwG/JVQW+HJnZt0JJ/CHTd1v\nnsun83miu/cgVH040MxGNfWYkaV+Lt39r+7eHegLTDKzrZq67zyWT+ez0K9NSP98VgLXu/unG7LP\ntWIlmjeAujebOvHV7JirTcdsm8ZsC6HiQL+1PyzUTbsfGOXur9Y5Rsd6x3ij0X9F/siX84lnH751\n90+y2+zbxL8lttTP5Vru/iJQA+yW3U7XZvOdz2K4NiH987kv8Esze5VQ4PgSMzuTpl6fkW5olRIu\ngM7AJqx1g3umAAAC0ElEQVT/htYAvryh1eC2wO71bmj9Lvt9a2AhcHSOWJ4l3DAzCveGa16cT8LN\nxu2y31sTbiCeFvv85Pm57AyUZr/vDPwD2FLXZvOez2K4NmOcz3r7/QlwXp3fjb4+Y56ww4CXCLMg\nLs4u+yHwwzptbsyuX0id2SK5ts0unwEsyp7A+4Dts8svBT4Bqut81l50e2e3WQ5Mjn0hFfL5BDYn\nvDtoIbCY0P222Ocmz8/lSdlzVU2YxTOszja6NpvpfBbLtZn2+ax33PqJptHXpx7YFBGRRMV+TYCI\niBQ5JRoREUmUEo2IiCRKiUZERBKlRCMiIolSohERkUQp0YiISKKUaEQKgJkdZWYdYschsiGUaETy\nXLbE+2gKv8S9tFBKNCJ5zsO7fxbGjkNkQynRiORgZreb2TtmtijHulvN7L/Z95q8ZWavZ7/Pr/cC\nuIb2fX52u1HZ3x3NbJmZXWJmQ+t89kvibxNJW2nsAETy1G+AKYQ3B9a3D9DG3d3MfgJ87O7XNWHf\n84DZ7v47MysB9gf6u/tHuRqb2fbAHsAg4P815Y8QyQdKNCI5uPsTZta5/nIz6wq87F+tRtvUeyf9\ngWfNrA3wHeB+d//vOmL5F3BCE48hkjc0dCbSNIcBszZyH/2Alwml2V9eV5IRKQZKNCJN8y1g9kbu\nox+wLfAn4MSNjkgkzynRiDSSmW0GbJ2dBbah+2gPvOXuvwd+DxxtZpq2LEVNiUak8QYBj62vkZk9\nambfbGB1f+AZAHf/EHgOGNJsEYrkISUakRzMbBrwF2APM/unmZ0KDCP3sJnX2a4EKAPez7HP/YEz\ngfZmtmO2h7QZ8FMz65LAnyGSF/QqZ5FGMrPngX3d/fN1tOkOjHH389OLTCS/KdGIiEiiNHQmIiKJ\nUqIREZFEKdGIiEiilGhERCRRSjQiIpIoJRoREUmUEo2IiCRKiUZERBKlRCMiIon6/0p9iTHlKfjy\nAAAAAElFTkSuQmCC\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x8281150>"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Slope and intercept are, -6419.8 and 14.45\n",
+ "Pre-exponential factor and Activation energy are 53.37 kJ/mol and 1.88e+06 1/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 54
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example Problem 18.9, Page Number 473"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "Ea = 42.e3 #Activation energy for reaction, J/mol\n",
+ "A = 1.e12 #Pre-exponential factor for reaction, 1/s\n",
+ "T = 298.0 #Temeprature, K\n",
+ "Kc = 1.0e4 #Equilibrium constant for reaction\n",
+ "R = 8.314 #Ideal gas constant, J/(mol.K)\n",
+ "#Calculations\n",
+ "kB = A*exp(-Ea/(R*T))\n",
+ "kA = kB*Kc\n",
+ "kApp = kA + kB\n",
+ "\n",
+ "#Results\n",
+ "print 'Forward Rate constant is %4.2e 1/s'%kA\n",
+ "print 'Backward Rate constant is %4.2e 1/s'%kB\n",
+ "print 'Apperent Rate constant is %4.2e 1/s'%kApp"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Forward Rate constant is 4.34e+08 1/s\n",
+ "Backward Rate constant is 4.34e+04 1/s\n",
+ "Apperent Rate constant is 4.34e+08 1/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 55
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example Problem 18.10, Page Number 480"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import pi\n",
+ "#Variable Declaration\n",
+ "Dh = 7.6e-7 #Diffusion coefficient of Hemoglobin, cm2/s\n",
+ "Do2 = 2.2e-5 #Diffusion coefficient of oxygen, cm2/s\n",
+ "rh = 35. #Radius of Hemoglobin, \u00b0A\n",
+ "ro2 = 2.0 #Radius of Oxygen, \u00b0A\n",
+ "k = 4e7 #Rate constant for binding of O2 to Hemoglobin, 1/(M.s)\n",
+ "NA =6.022e23 #Avagadro Number\n",
+ "#Calculations\n",
+ "DA = Dh + Do2\n",
+ "kd = 4*pi*NA*(rh+ro2)*1e-8*DA\n",
+ "\n",
+ "#Results\n",
+ "print 'Estimated rate %4.1e 1/(M.s) is far grater than experimental value of %4.1e 1/(M.s), \\nhence the reaction is not diffusion controlled'%(kd,k)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Estimated rate 6.4e+13 1/(M.s) is far grater than experimental value of 4.0e+07 1/(M.s), \n",
+ "hence the reaction is not diffusion controlled\n"
+ ]
+ }
+ ],
+ "prompt_number": 65
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example Problem 18.11, Page Number 484"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log, e\n",
+ "#Variable Declaration\n",
+ "Ea = 104e3 #Activation energy for reaction, J/mol\n",
+ "A = 1.e13 #Pre-exponential factor for reaction, 1/s\n",
+ "T = 300.0 #Temeprature, K\n",
+ "R = 8.314 #Ideal gas constant, J/(mol.K)\n",
+ "h = 6.626e-34 #Plnak constant, Js\n",
+ "c = 1.0 #Std. State concentration, M\n",
+ "k = 1.38e-23 #,J/K\n",
+ "\n",
+ "#Calculations\n",
+ "dH = Ea - 2*R*T\n",
+ "dS = R*log(A*h*c/(k*T*e**2))\n",
+ "\n",
+ "#Results\n",
+ "print 'Forward Rate constant is %4.2e 1/s'%dH\n",
+ "print 'Backward Rate constant is %4.2f 1/s'%dS"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Forward Rate constant is 9.90e+04 1/s\n",
+ "Backward Rate constant is -12.72 1/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 72
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |