summaryrefslogtreecommitdiff
path: root/Theory_Of_Machines/ch7.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Theory_Of_Machines/ch7.ipynb')
-rwxr-xr-xTheory_Of_Machines/ch7.ipynb788
1 files changed, 788 insertions, 0 deletions
diff --git a/Theory_Of_Machines/ch7.ipynb b/Theory_Of_Machines/ch7.ipynb
new file mode 100755
index 00000000..83081a67
--- /dev/null
+++ b/Theory_Of_Machines/ch7.ipynb
@@ -0,0 +1,788 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:c5834020c85eb4ee9dd0f62630cfe11c8ed3ce693f7ae9cc407ce5e3a8a74085"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 7 : Velocity in Mechanisms (Relative Velocity Method)"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.1 Page No : 148"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "NBA = 120. \t\t\t#rpm\n",
+ "AB = 40./1000\n",
+ "CD = 80./1000 \t\t\t#m\n",
+ "\n",
+ "#Solution:\n",
+ "#Refer Fig. 7.7\n",
+ "#Calculating the angular velocity of the crank AB\n",
+ "omegaBA = 2*math.pi*NBA/60 \t\t\t#rad/s\n",
+ "#Calculating the velocity of B with respect to A\n",
+ "vBA = omegaBA*AB \t\t\t#m/s\n",
+ "vB = vBA\n",
+ "#By measurement from the velocity diagram Fig. 7.7(b)\n",
+ "vCD = 0.385 \t\t\t#m/s\n",
+ "vC = vCD\n",
+ "#Calculating the angular velocity of link CD\n",
+ "omegaCD = vCD/CD \t\t\t#rad/s\n",
+ "\n",
+ "#Results:\n",
+ "print \" The angular velocity of link CD omegaCD = %.1f rad/s clockwise about D.\"%(omegaCD)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The angular velocity of link CD omegaCD = 4.8 rad/s clockwise about D.\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.2 Page No : 148"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "NBO = 180. \t\t\t#rpm\n",
+ "OB = 0.5\n",
+ "PB = 2.\n",
+ "dO = 50./1000\n",
+ "dB = 60./1000\n",
+ "dC = 30./1000 \t\t\t#m\n",
+ "\n",
+ "#Solution:\n",
+ "#Refer Fig. 7.8\n",
+ "#Calculating the angular velocity of the crank BO\n",
+ "omegaBO = 2*math.pi*NBO/60 \t\t\t#rad/s\n",
+ "#Calculating the linear velocity of B with respect to O\n",
+ "vBO = omegaBO*OB \t\t\t#m/s\n",
+ "vB = vBO\n",
+ "#By measurement from the velocity diagram Fig. 7.8(b)\n",
+ "vP = 8.15\n",
+ "vPB = 6.8\n",
+ "vE = 8.5\n",
+ "bg = 5.\n",
+ "bp = vPB\n",
+ "vG = 8. \t\t\t#m/s\n",
+ "#Calculating the angular velocity of the connecting rod PB\n",
+ "omegaPB = vPB/PB \t\t\t#rad/s\n",
+ "#Calculating the velocity of rubbing at the pin of crank-shaft\n",
+ "vCS = dO/2*omegaBO \t\t\t#Velocity of rubbing at the pin of crank-shaft m/s\n",
+ "#Calculating the velocity of rubbing at the pin of crank\n",
+ "vC = dB/2*(omegaBO+omegaPB) \t\t\t#Velocity of rubbing at the pin of crank m/s\n",
+ "#Calculating the velocity of rubbing at the pin of cross-head\n",
+ "vPCH = dC/2*omegaPB \t\t\t#Velocity of rubbing at the pin of cross-head m/s\n",
+ "#Calculating the position of point G on the connecting rod\n",
+ "BG = bg/bp*PB \t\t\t#m\n",
+ "\n",
+ "#Results:\n",
+ "print \" The velocity of piston P vP = %.2f m/s.\"%(vP)\n",
+ "print \" The angular velocity of connecting rod omegaPB = %.1f rad/s anticlockwise.\"%(omegaPB)\n",
+ "print \" The velocity of point E on the connecting rod vE = %.1f m/s.\"%(vE)\n",
+ "print \" The velocity of rubbing at the pin of crank-shaft is %.2f m/s.\"%(vCS)\n",
+ "print \" The velocity of rubbing at the pin of crank is %.4f m/s.\"%(vC)\n",
+ "print \" The velocity of rubbing at the pin of cross-head is %.3f m/s.\"%(vPCH)\n",
+ "print \" The position of point G on the connecting rod BG = %.2f m.\"%(BG)\n",
+ "print \" The linear velocity of point G vG = %d m/s.\"%(vG)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The velocity of piston P vP = 8.15 m/s.\n",
+ " The angular velocity of connecting rod omegaPB = 3.4 rad/s anticlockwise.\n",
+ " The velocity of point E on the connecting rod vE = 8.5 m/s.\n",
+ " The velocity of rubbing at the pin of crank-shaft is 0.47 m/s.\n",
+ " The velocity of rubbing at the pin of crank is 0.6675 m/s.\n",
+ " The velocity of rubbing at the pin of cross-head is 0.051 m/s.\n",
+ " The position of point G on the connecting rod BG = 1.47 m.\n",
+ " The linear velocity of point G vG = 8 m/s.\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.3 Page No : 150"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "NAO = 600. \t\t\t#rpm\n",
+ "OA = 28./1000 #m\n",
+ "BD = 46./1000 \t\t#m\n",
+ "\n",
+ "#Solution:\n",
+ "#Refer Fig. 7.10\n",
+ "#Calculating the angular velocity of crank AO\n",
+ "omegaAO = 2*math.pi*NAO/60 \t\t\t#rad/s\n",
+ "#Calculating the velocity of A with respect to O\n",
+ "vAO = omegaAO*OA \t\t\t#m/s\n",
+ "vA = vAO\n",
+ "#By measurement from the velocity diagram Fig. 7.10(b)\n",
+ "vD = 1.6\n",
+ "vDB = 1.7 \t\t\t#m/s\n",
+ "#Calculating the angular velocity of D with respect to B\n",
+ "omegaBD = vDB/BD \t\t\t#rad/s\n",
+ "\n",
+ "#Results:\n",
+ "print \" The velocity of the slider D vD = %.1f m/s.\"%(vD)\n",
+ "print \" The angular velocity of the link BD omegaBD = %.2f rad/s clockwise sbout B.\"%(omegaBD)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The velocity of the slider D vD = 1.6 m/s.\n",
+ " The angular velocity of the link BD omegaBD = 36.96 rad/s clockwise sbout B.\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.4 Page No : 151"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "NBA = 120. \t\t\t#rpm\n",
+ "AB = 150./1000 #mm\n",
+ "DC = 450./1000 #mm\n",
+ "BC = 450./1000 #mm\n",
+ "dC = 50./1000\n",
+ "rC = dC/2 \t\t\t#m\n",
+ "\n",
+ "#Solution:\n",
+ "#Refer Fig. 7.12\n",
+ "#Calculating the angular velocity of the crank AB\n",
+ "omegaBA = 2*math.pi*NBA/60 \t\t\t#rad/s\n",
+ "#Calculating the linear velocity of B with respect to A\n",
+ "vBA = omegaBA*AB \t\t\t#m/s\n",
+ "vB = vBA\n",
+ "#By measurement from the velocity diagram Fig. 7.12(b)\n",
+ "vF = 0.7\n",
+ "vCD = 2.25\n",
+ "vCB = 2.25 \t\t\t#m/s\n",
+ "#Calculating the angular velocity of DC\n",
+ "omegaDC = vCD/DC \t\t\t#rad/s\n",
+ "#Calculating the angular velocity of BC\n",
+ "omegaCB = vCB/BC \t\t\t#rad/s\n",
+ "#Calculating the rubbing speed at the pin C\n",
+ "vr = (omegaCB-omegaDC)*rC \t\t\t#The rubbing speed at the pin C m/s\n",
+ "\n",
+ "#Results:\n",
+ "print \" The velocity of block F vF = %.1f m/s.\"%(vF)\n",
+ "print \" The angular velocity of DC omegaDC = %d rad/s anticlockwise about D.\"%(omegaDC)\n",
+ "print \" The rubbing speed at the pin C is %d m/s.\"%(vr)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The velocity of block F vF = 0.7 m/s.\n",
+ " The angular velocity of DC omegaDC = 5 rad/s anticlockwise about D.\n",
+ " The rubbing speed at the pin C is 0 m/s.\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.5 Page No : 153"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "NAO = 120. \t\t\t#rpm\n",
+ "OA = 100./1000\n",
+ "CE = 350./1000 \t\t\t#m\n",
+ "\n",
+ "#Solution:\n",
+ "#Refer Fig. 7.13\n",
+ "#Calculating the angular speed of the crank OA\n",
+ "omegaAO = 2*math.pi*NAO/60 \t\t\t#rad/s\n",
+ "#Calculating the velocity of A with respect to O\n",
+ "vAO = omegaAO*OA \t\t\t#m/s\n",
+ "vA = vAO\n",
+ "#By measurement from the velocity diagram Fig. 7.14(b)\n",
+ "vF = 0.53\n",
+ "od = 1.08\n",
+ "vCE = 0.44 \t\t\t#m/s\n",
+ "#Calculating the angular velocity of CE\n",
+ "omegaCE = vCE/CE \t\t\t#rad/s\n",
+ "\n",
+ "#Results:\n",
+ "print \" The velocity of F vF = %.2f m/s.\"%(vF)\n",
+ "print \" The velocity of sliding of CE in the trunnion is %.2f m/s.\"%(od)\n",
+ "print \" The angular velocity of CE omegaCE = %.2f rad/s clockwise about E.\"%(omegaCE)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The velocity of F vF = 0.53 m/s.\n",
+ " The velocity of sliding of CE in the trunnion is 1.08 m/s.\n",
+ " The angular velocity of CE omegaCE = 1.26 rad/s clockwise about E.\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.6 Page No : 155"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "NCO = 120. \t\t\t#rpm\n",
+ "OC = 125./1000 \t\t\t#m\n",
+ "\n",
+ "#Solution:\n",
+ "#Refer Fig. 7.15\n",
+ "#Calculating the angular velocity of the crank CO\n",
+ "omegaCO = 2*math.pi*NCO/60 \t\t\t#rad/s\n",
+ "#Calculating the linear velocity of C with respect to O\n",
+ "vCO = omegaCO*OC \t\t\t#m/s\n",
+ "vC = vCO\n",
+ "#By measurement from the velocity diagram Fig. 7.16(b)\n",
+ "\n",
+ "vCO = 1.57\n",
+ "vE = 0.7 \t\t\t#m/s\n",
+ "\n",
+ "#Results:\n",
+ "print \" The absolute velocity of point E of the lever vE = %.1f m/s.\"%(vE)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The absolute velocity of point E of the lever vE = 0.7 m/s.\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.7 Page No : 156"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "NBO1 = 40. \t\t\t#rpm\n",
+ "O1O2 = 800./1000\n",
+ "O1B = 300./1000\n",
+ "O2D = 1300./1000\n",
+ "DR = 400./1000 \t\t\t#m\n",
+ "\n",
+ "#Solution:\n",
+ "#Refer Fig. 7.18\n",
+ "#Calculating the angular speed of the crank BO\n",
+ "omegaBO1 = 2*math.pi*NBO1/60 \t\t\t#rad/s\n",
+ "#Calculating the velocity of B with respect to O1\n",
+ "vBO1 = omegaBO1*O1B \t\t\t#m/s\n",
+ "vB = vBO1\n",
+ "#By measurement from the velocity diagram Fig. 7.18(b)\n",
+ "vR = 1.44\n",
+ "vDO2 = 1.32 \t\t\t#m/s\n",
+ "vD = vDO2\n",
+ "#Calculating the angular velocity of the link O2D\n",
+ "omegaDO2 = vDO2/O2D \t\t\t#rad/s\n",
+ "\n",
+ "#Results:\n",
+ "print \" The velocity of the ram R vR = %.2f m/s.\"%(vR)\n",
+ "print \" The angular velocity of the link O2D omegaDO2 = %.3f rad/s anticlockwise about O2.\"%(omegaDO2)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The velocity of the ram R vR = 1.44 m/s.\n",
+ " The angular velocity of the link O2D omegaDO2 = 1.015 rad/s anticlockwise about O2.\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.8 Page No : 158"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "NAO1 = 60. \t\t\t#rpm\n",
+ "O1A = 85.\n",
+ "rQ = 50. \t\t\t#mm\n",
+ "\n",
+ "#Solution:\n",
+ "#Refer Fig. 7.20 and Fig. 7.21\n",
+ "#Calculating the angular velocity of AO1\n",
+ "omegaAO1 = 2*math.pi*NAO1/60 \t\t\t#rad/s\n",
+ "#Calculating the velocity of A with respect to O1\n",
+ "vAO1 = omegaAO1*O1A \t\t\t#mm/s\n",
+ "vA = vAO1\n",
+ "#By measurement from the velocity diagram Fig. 7.20(b)\n",
+ "vDO2 = 410. \t\t\t#mm/s\n",
+ "O2D = 264. \t\t\t#mm\n",
+ "angleB1O2B2 = 60*math.pi/180 \t\t\t#rad\n",
+ "#To vary the Scilab function 'beta'\n",
+ "alpha = 120\n",
+ "beta = 240 \t\t\t#degrees\n",
+ "#Calculating the angular velocity of the quadant Q\n",
+ "omegaQ = vDO2/O2D \t\t\t#rad/s\n",
+ "#Calculating the linear speed of the rack\n",
+ "vR = omegaQ*rQ \t\t\t#mm/s\n",
+ "#Calculating the ratio of times of lowering and raimath.sing the rack\n",
+ "r = beta/alpha\n",
+ "#Calculating the length of stroke of the rack\n",
+ "L = rQ*angleB1O2B2 \t\t\t#mm\n",
+ "\n",
+ "#Results:\n",
+ "print \" The linear speed of the rack vR = %.1f mm/s.\"%(vR)\n",
+ "print \" The ratio of times of lowering and raising the rack is %d.\"%(r)\n",
+ "print \" The length of the stroke of the rack is %.2f mm.\"%(L)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The linear speed of the rack vR = 77.7 mm/s.\n",
+ " The ratio of times of lowering and raising the rack is 2.\n",
+ " The length of the stroke of the rack is 52.36 mm.\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.9 Page No : 160"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "NPO = 120. \t\t\t#rpm\n",
+ "OQ = 100./1000 #mm\n",
+ "OP = 200./1000 #mm\n",
+ "RQ = 150./1000 #mm\n",
+ "RS = 500./1000 \t\t#m\n",
+ "\n",
+ "#Solution:\n",
+ "#Refer Fig. 7.22\n",
+ "#Calculating the angular speed of the crank PO\n",
+ "omegaPO = 2*math.pi*NPO/60 \t\t\t#rad/s\n",
+ "#Calculating the velocity of P with respect to O\n",
+ "vPO = omegaPO*OP \t\t\t#m/s\n",
+ "vP = vPO\n",
+ "#By measurement from the velocity diagram Fig. 7.23(b)\n",
+ "vS = 0.8\n",
+ "vSR = 0.96\n",
+ "vTP = 0.85 \t\t\t#m/s\n",
+ "#Calculating the angular velocity of link RS\n",
+ "omegaRS = vSR/RS \t\t\t#rad/s\n",
+ "\n",
+ "#Results:\n",
+ "print \" The velocity of the slider S cutting tool vS = %.1f m/s.\"%(vS)\n",
+ "print \" The angular velocity of the link RS omegaRS = %.2f rad/s clockwise about R.\"%(omegaRS)\n",
+ "print \" The velocity of the sliding block T on the slotted lever QT vTP = %.2f m/s.\"%(vTP)\n",
+ "\n",
+ "# note : answer in book is wrong\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The velocity of the slider S cutting tool vS = 0.8 m/s.\n",
+ " The angular velocity of the link RS omegaRS = 1.92 rad/s clockwise about R.\n",
+ " The velocity of the sliding block T on the slotted lever QT vTP = 0.85 m/s.\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.10 Page No : 162"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "NAD = 100. \t\t\t#rpm\n",
+ "TA = 50. \t\t\t#N-m\n",
+ "DA = 300./1000\n",
+ "CB = 360./1000\n",
+ "AB = CB\n",
+ "DC = 600./1000 \t\t\t#m\n",
+ "eta = 70./100 \t\t\t#%\n",
+ "\n",
+ "#Solution:\n",
+ "#Refer Fig. 7.25\n",
+ "#Calculating the angular velocity of the crank AD\n",
+ "omegaAD = 2*math.pi*NAD/60 \t\t\t#rad/s\n",
+ "#Calculating the velocity of A with respect to D\n",
+ "vAD = omegaAD*DA \t\t\t#m/s\n",
+ "vA = vAD\n",
+ "#By measurement from the velocity diagram Fig. 7.25(b)\n",
+ "vBC = 2.25 \t\t\t#m/s\n",
+ "vB = vBC\n",
+ "#Calculating the angular velocity of the driven link CB\n",
+ "omegaBC = vBC/CB \t\t\t#rad/s\n",
+ "#Calculating the actual mechanical advantage\n",
+ "omegaA = omegaAD\n",
+ "omegaB = omegaBC\n",
+ "MAactual = eta*omegaA/omegaB\n",
+ "#Calculating the resisting torque\n",
+ "TB = eta*TA*omegaA/omegaB \t\t\t#N-m\n",
+ "\n",
+ "#Results:\n",
+ "print \" The velocity of the point B. vB = %.2f m/s.\"%(vB)\n",
+ "print \" The angular velocity of the driven link CB. omegaBC = %.2f rad/s.\"%(omegaBC)\n",
+ "print \" The actual mechanical advantage. M.A.actual) = %.2f.\"%(MAactual)\n",
+ "print \" The resisting torque. TB = %.1f N-m.\"%(TB)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The velocity of the point B. vB = 2.25 m/s.\n",
+ " The angular velocity of the driven link CB. omegaBC = 6.25 rad/s.\n",
+ " The actual mechanical advantage. M.A.actual) = 1.17.\n",
+ " The resisting torque. TB = 58.6 N-m.\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.11 Page No : 163"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "WC = 2.5*1000\n",
+ "WD = 4.*1000 \t\t\t#N\n",
+ "OA = 175./1000 #mm\n",
+ "AB = 180./1000 #mm\n",
+ "AD = 500./1000 #mm\n",
+ "BC = 325./1000 \t\t\t#m\n",
+ "\n",
+ "#Solution:\n",
+ "#Refer Fig. 7.26\n",
+ "#Assuming the speed of crank OA to be 'N'\n",
+ "#Calculating the angular velocity of crank OA\n",
+ "#Assume the vector oa (i.e. velocity of A) as 20 m/s\n",
+ "N = 20/(2*math.pi/60*OA) \t\t\t#mm\n",
+ "#By measurement from the velocity diagram Fig. 7.27(b)\n",
+ "vC = 35.\n",
+ "vD = 21. \t\t\t#mm\n",
+ "#Calculating the velocity ratio between C and the ram D\n",
+ "r = vC/vD \t\t\t#The velocity ratio between C and the ram D\n",
+ "#Calculating the efficiency of the machine\n",
+ "eta = (WD*vD)/(WC*vC)*100 \t\t\t#%\n",
+ "\n",
+ "#Results:\n",
+ "print \" The velocity ratio between C and the ram D is %.2f.\"%(r)\n",
+ "print \" The efficiency of the machine eta = n %d %%.\"%(eta)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The velocity ratio between C and the ram D is 1.67.\n",
+ " The efficiency of the machine eta = n 96 %.\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.12 Page No : 165"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "NAO = 180. \t\t\t#rpm\n",
+ "OA = 180./1000 #mm\n",
+ "CB = 240./1000 #mm\n",
+ "AB = 360./1000 #mm\n",
+ "BD = 540./1000 \t\t#mm\n",
+ "FD = 2.*1000 \t\t\t#N\n",
+ "DA = 30./1000\n",
+ "DD = DA\n",
+ "rA = DA/2\n",
+ "rD = DD/2 \t\t\t#m\n",
+ "\n",
+ "#Solution:\n",
+ "#Refer Fig. 7.28\n",
+ "#Calculating the angular velocity of the crank OA\n",
+ "omegaAO = 2*math.pi*NAO/60 \t\t\t#rad/s\n",
+ "#Calculating the velocity of A with respect to O\n",
+ "vAO = omegaAO*OA\n",
+ "vA = vAO\n",
+ "#By measurement fro the velocity diagram Fig. 7.29(b)\n",
+ "vD = 2.05\n",
+ "vBA = 0.9\n",
+ "vBC = 2.8\n",
+ "vDB = 2.4 \t\t\t#m/s\n",
+ "#Calculating the angular velocity of the link AB\n",
+ "omegaAB = vBA/AB \t\t\t#rad/s\n",
+ "#Calculating the angular velocity of the link CB\n",
+ "omegaCB = vBC/CB \t\t\t#rad/s\n",
+ "#Calculating the angular velocity of the link BD\n",
+ "omegaBD = vDB/BD \t\t\t#rad/s\n",
+ "#Calculating the relative angular velocity at A\n",
+ "rvA = omegaCB-omegaAB+omegaBD \t\t\t#The relative angular velocity at A rad/s\n",
+ "#Calculating the relative angular velocity at D\n",
+ "rvD = omegaBD \t\t\t#The relative angular velocity at D rad/s\n",
+ "#Calculating the velocity of rubbing on the pin A\n",
+ "vrA = rvA*rA*1000 \t\t\t#The velocity of rubbing on the pin A mm/s\n",
+ "#Calculating the velocity of rubbing on the pin D\n",
+ "vrD = rvD*rD*1000 \t\t\t#The velocity of rubbing on the pin D mm/s\n",
+ "#Calculating the torque applied to crank OA\n",
+ "TA = FD*vD/omegaAO \t\t\t#N-m\n",
+ "\n",
+ "#Results:\n",
+ "print \" The velocity of slider D vD = %.2f m/s.\"%(vD)\n",
+ "print \" The angular velocity of the link AB, omegaAB = %.1f rad/s, anticlockwise about A.\"%(omegaAB)\n",
+ "print \" The angular velocity of the link CB, omegaCB = %.2f rad/s, anticlockwise about C.\"%(omegaCB)\n",
+ "print \" The angular velocity of the link BD, omegaBD = %.2f rad/s, clockwise about B.\"%(omegaBD)\n",
+ "print \" The velocity of rubbing on the pin A is %d mm/s.\"%(vrA)\n",
+ "print \" The velocity of rubbing on the pin D is %d mm/s.\"%(vrD)\n",
+ "print \" The torque applied to the crank OA, TA = %.1f N-m.\"%(TA)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The velocity of slider D vD = 2.05 m/s.\n",
+ " The angular velocity of the link AB, omegaAB = 2.5 rad/s, anticlockwise about A.\n",
+ " The angular velocity of the link CB, omegaCB = 11.67 rad/s, anticlockwise about C.\n",
+ " The angular velocity of the link BD, omegaBD = 4.44 rad/s, clockwise about B.\n",
+ " The velocity of rubbing on the pin A is 204 mm/s.\n",
+ " The velocity of rubbing on the pin D is 66 mm/s.\n",
+ " The torque applied to the crank OA, TA = 217.5 N-m.\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.13 Page No : 167"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math \n",
+ "\n",
+ "# Variables:\n",
+ "NBA = 180 \t\t\t#rpm\n",
+ "AB = 0.45 #m\n",
+ "BD = 1.5 #m\n",
+ "BC = 0.9 #m\n",
+ "CE = BC \t\t\t#m\n",
+ "FD = 500.\n",
+ "FE = 750. \t\t\t#N\n",
+ "\n",
+ "#Solution:\n",
+ "#Refer Fig. 7.31\n",
+ "#Calculating the angular velocity of the crank AB\n",
+ "omegaBA = 2*math.pi*NBA/60 \t\t\t#rad/s\n",
+ "#Calculating the velocity of B with respect to A\n",
+ "vBA = omegaBA*AB \t\t\t#m/s\n",
+ "vB = vBA\n",
+ "#By measurement from the velocity diagram Fig. 7.31(b)\n",
+ "vD = 9.5\n",
+ "vE = 1.7 \t\t\t#m/s\n",
+ "#Calculating the power input\n",
+ "Pi = FD*vD-FE*vE \t\t\t#N-m/s\n",
+ "#Calculating the turning moment at A\n",
+ "TA = Pi/omegaBA \t\t\t#N-m\n",
+ "\n",
+ "#Results:\n",
+ "print \" The velocity of slider D, vD = %.1f m/s.\"%(vD)\n",
+ "print \" The velocity of slider E, vE = %.1f m/s.\"%(vE)\n",
+ "print \" The turning moment at A, TA = %.1f N-m.\"%(TA)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The velocity of slider D, vD = 9.5 m/s.\n",
+ " The velocity of slider E, vE = 1.7 m/s.\n",
+ " The turning moment at A, TA = 184.4 N-m.\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file