summaryrefslogtreecommitdiff
path: root/Textbook_Of_Heat_Transfer/Chapter_7_Heat.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Textbook_Of_Heat_Transfer/Chapter_7_Heat.ipynb')
-rwxr-xr-xTextbook_Of_Heat_Transfer/Chapter_7_Heat.ipynb440
1 files changed, 440 insertions, 0 deletions
diff --git a/Textbook_Of_Heat_Transfer/Chapter_7_Heat.ipynb b/Textbook_Of_Heat_Transfer/Chapter_7_Heat.ipynb
new file mode 100755
index 00000000..9fec8619
--- /dev/null
+++ b/Textbook_Of_Heat_Transfer/Chapter_7_Heat.ipynb
@@ -0,0 +1,440 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:c8c0ee88164cfcd21e5e0ef3ff65a90467a8a7878be11fb5b83841227f683525"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 7: Heat Exchangers"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.1, Page no:285"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h = 2000 ; #W/m^2 K\n",
+ "#From Table 7.1\n",
+ "Uf = 0.0001 ; #fouling factor, m^2K/W\n",
+ "\n",
+ "#calculations\n",
+ "hf = 1/(1/ h+ Uf );\n",
+ "p = (h-hf)/h *100;\n",
+ "\n",
+ "#result\n",
+ "print\"Heat transfer coefficient including the effect of foulung =\",round(hf,4),\"W/m^2 K\";\n",
+ "print\"Percentage reduction =\",round(p,4);"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Heat transfer coefficient including the effect of foulung = 1666.6667 W/m^2 K\n",
+ "Percentage reduction = 16.6667\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.2, Page no:294"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "m = 1000 ; #kg/h\n",
+ "Thi = 50 ; #C\n",
+ "The = 40 ; #C\n",
+ "Tci = 35 ; #C\n",
+ "Tce = 40 ; #C\n",
+ "U = 1000 ; #OHTC, W/m^2 K\n",
+ "#From fig 7.15,\n",
+ "F =0.91 ;\n",
+ "#Again from fig 7.15,\n",
+ "F =0.91 ;\n",
+ "\n",
+ "#calculations\n",
+ "#Using Eqn 7.5.25\n",
+ "q = m /3600*4174*( Thi - The ) ; #W\n",
+ "deltaT = (( Thi - Tce ) -(The - Tci ))/math.log (( Thi -Tce)/( The -Tci )); #C\n",
+ "#T1 = Th and T2 = Tc\n",
+ "R = (Thi - The )/( Tce - Tci ) ;\n",
+ "S = (Tce - Tci )/( Thi - Tci ) ;\n",
+ "#Alternatively, taking T1 = Tc and T2 = Th\n",
+ "R2 = (Tci - Tce )/( The - Thi );\n",
+ "S2 = (The - Thi )/( Tci - Thi );\n",
+ "A = q/(U*F* deltaT );\n",
+ "\n",
+ "#result\n",
+ "print\"delta T =\",round(deltaT,4);\n",
+ "print\"\\nTaking T1 = Th and T2 = Tc\";\n",
+ "print\"R=\",round(R,4), \"S=\",round(S,4);\n",
+ "print\"Hence, F =\",round(F,4);\n",
+ "print\"\\nTaking T1 = Tc and T2 = Th\";\n",
+ "print\"R2=\",round(R2,4),\"S2=\",round(S2,4);\n",
+ "print\"Hence, F =\",round(F,4);\n",
+ "print\"\\nArea =\",round(A,4),\"m^2\";"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "delta T = 7.2135\n",
+ "\n",
+ "Taking T1 = Th and T2 = Tc\n",
+ "R= 2.0 S= 0.3333\n",
+ "Hence, F = 0.91\n",
+ "\n",
+ "Taking T1 = Tc and T2 = Th\n",
+ "R2= 0.5 S2= 0.6667\n",
+ "Hence, F = 0.91\n",
+ "\n",
+ "Area = 1.7663 m^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.3, Page no:295"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "#Because of change of phase , Thi = The\n",
+ "Thi = 100 ; #[C], Saturated steam\n",
+ "The = 100 ; #[C], Condensed steam\n",
+ "Tci = 30 ; #[C], Cooling water inlet\n",
+ "Tce = 70 ; #[C], cooling water outlet\n",
+ "#From fig 7.16\n",
+ "F = 1;\n",
+ "\n",
+ "#calculations\n",
+ "R = (Thi - The )/( Tce - Tci ) ;\n",
+ "S = (Tce - Tci )/( Thi - Tci ) ;\n",
+ "#For counter flow arrangement\n",
+ "Tmcounter = (( Thi - Tce ) -(The - Tci ))/math.log (( Thi - Tce )/(The - Tci )); #For counter flow arrangement\n",
+ "#Therefore\n",
+ "Tm = F* Tmcounter ;\n",
+ "\n",
+ "#result\n",
+ "print\"Mean Temperaature Difference =\",round(Tm,4),\"C\";"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Mean Temperaature Difference = 47.2089 C\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.4(a), Page no:302"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "#Using Mean Temperature Difference approach\n",
+ "mhot = 10 ; #kg/min\n",
+ "mcold = 25 ; #kg/min\n",
+ "hh = 1600 ; #[W/m^2 K], Heat transfer coefficient on hot side\n",
+ "hc = 1600 ; #[W/m^2 K], Heat transfer coefficient on cold side\n",
+ "Thi = 70 ; #C\n",
+ "Tci = 25 ; #C\n",
+ "The = 50 ; #C\n",
+ "\n",
+ "#calculations\n",
+ "#Heat Transfer Rate, q\n",
+ "q = mhot /60*4179*( Thi - The ); #W\n",
+ "#Heat gained by cold water = heat lost by the hot water\n",
+ "Tce = 25 + q *1/( mcold /60*4174) ; #C\n",
+ "#Using equation 7.5.13\n",
+ "Tm = (( Thi - Tci ) -(The - Tce ))/math.log (( Thi -Tci)/( The -Tce)); #C\n",
+ "U = 1/(1/ hh + 1/ hc); #W/m^2 K\n",
+ "A = q/(U*Tm); #Area, [m^2]\n",
+ "\n",
+ "#result\n",
+ "print\"(a)\";\n",
+ "print\"Mean Temperature Difference =\",round(Tm,4),\"C\";\n",
+ "print\"Area of Heat Exchanger =\",round(A,4),\"m^2\";"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a)\n",
+ "Mean Temperature Difference = 28.7569 C\n",
+ "Area of Heat Exchanger = 0.6055 m^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.4(b) , Page no:302"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "#Using Mean Temperature Difference approach\n",
+ "mhot = 10 ; #kg/min\n",
+ "mcold = 25 ; #kg/min\n",
+ "hh = 1600 ; #[W/m^2 K], Heat transfer coefficient on hot side\n",
+ "hc = 1600 ; #[W/m^2 K], Heat transfer coefficient on cold side\n",
+ "Thi = 70 ; #C\n",
+ "Tci = 25 ; #C\n",
+ "The = 50 ; #C\n",
+ "mhot1 = 20 ; #kg/min\n",
+ "\n",
+ "#calculations\n",
+ "#Heat Transfer Rate, q\n",
+ "q = mhot/60*4179*( Thi - The ); #W\n",
+ "#Heat gained by cold water = heat lost by the hot water\n",
+ "Tce = 25 + q *1/( mcold /60*4174) ;\n",
+ "# Using equation 7.5.13\n",
+ "Tm = ((( Thi - Tci ) -(The - Tce ))/math.log (( Thi -Tci)/( The -Tce))); #C\n",
+ "U = 1/(1/ hh + 1/ hc); #W/m^2 K\n",
+ "A = q/(U*Tm); #Area, [m^2]\n",
+ "#Flow rate on hot side i.e. 'hh' is doubled\n",
+ "hh1 = 1600*2**0.8 ; #W/m^2 K\n",
+ "U1 = 1/(1/ hh1 + 1/ hc); #W/m^2 K\n",
+ "mhCph = mhot1 /60*4179 ; #W/K\n",
+ "mcCpc = mcold /60*4174 ; #W/K\n",
+ "#Therefore\n",
+ "C = mhCph / mcCpc ;\n",
+ "ntu = U1*A/ mhCph ;\n",
+ "e = (1 - math.exp ( -(1+C)*ntu) )/(1+ C) ;\n",
+ "#Therefore (Thi - The)/(Thi - Tci) = e , we get\n",
+ "The = Thi - e*( Thi - Tci );\n",
+ "#Equating the heat lost by water to heat gained by cold water , we get\n",
+ "Tce = Tci + ( mhCph *( Thi - The ))/ mcCpc ;\n",
+ "\n",
+ "#result\n",
+ "print\"(b)\\nNTU =\",round(ntu,4);\n",
+ "print\"Exit temperature of cold and hot stream are\",round(Tce,4),\"C and\",round(The,4),\"C respectively.\";"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(b)\n",
+ "NTU = 0.4418\n",
+ "Exit temperature of cold and hot stream are 35.981 C and 56.2901 C respectively.\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.5 , Page no:304"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "mc = 2000 ; # [kg/h]\n",
+ "Tce = 40 ; # [C]\n",
+ "Tci = 15 ; # [C]\n",
+ "Thi = 80 ; # [C]\n",
+ "U = 50 ; # OHTC, [W/m**2 K]\n",
+ "A = 10 ; # Area, [m**2]\n",
+ "\n",
+ "#Calculations\n",
+ "# Using effective NTU method\n",
+ "# Assuming m_c*C_pc = (m*C_p)s\n",
+ "NTU = U*A/(mc*1005/3600);\n",
+ "e = (Tce-Tci)/(Thi-Tci);\n",
+ "# From fig 7.23, no value of C is found corresponding to the above values, hence assumption was wrong.\n",
+ "# So, m_h*C_ph must be equal to (m*C_p)s, proceeding by trail and error method\n",
+ "\n",
+ "mh_1 = 200\n",
+ "NTU_1 = U*A/(mh_1*1.161);\n",
+ "#Corresponding Values of C and e from fig 7.23\n",
+ "C = .416;\n",
+ "e = .78;\n",
+ "#From Equation 7.6.2 Page 297\n",
+ "The_1 = Thi - e*(Thi-Tci)\n",
+ "#From Heat Balance\n",
+ "The2_1 = Thi - mc*1005/3600*(Tce-Tci)/(mh_1*1.161);\n",
+ "\n",
+ "mh_2 = 250\n",
+ "NTU_2 = U*A/(mh_2*1.161);\n",
+ "#Corresponding Values of C and e from fig 7.23\n",
+ "C = .520;\n",
+ "e = .69;\n",
+ "#From Equation 7.6.2 Page 297\n",
+ "The_2 = Thi - e*(Thi-Tci)\n",
+ "#From Heat Balance\n",
+ "The2_2 = Thi - mc*1005/3600*(Tce-Tci)/(mh_2*1.161);\n",
+ "\n",
+ "mh_3 = 300\n",
+ "NTU_3 = U*A/(mh_3*1.161);\n",
+ "#Corresponding Values of C and e from fig 7.23\n",
+ "C = .624;\n",
+ "e = .625;\n",
+ "#From Equation 7.6.2 Page 297\n",
+ "The_3 = Thi - e*(Thi-Tci)\n",
+ "#From Heat Balance\n",
+ "The2_3 = Thi - mc*1005/3600*(Tce-Tci)/(mh_3*1.161);\n",
+ "\n",
+ "mh_4 = 350\n",
+ "NTU_4 = U*A/(mh_4*1.161);#Corresponding Values of C and e from fig 7.23\n",
+ "C = .728;\n",
+ "e = .57;\n",
+ "#From Equation 7.6.2 Page 297\n",
+ "The_4 = Thi - e*(Thi-Tci)\n",
+ "#From Heat Balance\n",
+ "The2_4 = Thi - mc*1005/3600*(Tce-Tci)/(mh_4*1.161);\n",
+ "\n",
+ "mh_5 = 400\n",
+ "NTU_5 = U*A/(mh_5*1.161);\n",
+ "#Corresponding Values of C and e from fig 7.23\n",
+ "C = .832;\n",
+ "e = .51;\n",
+ "#From Equation 7.6.2 Page 297\n",
+ "The_5 = Thi - e*(Thi-Tci)\n",
+ "#From Heat Balance\n",
+ "The2_5 = Thi - mc*1005/3600*(Tce-Tci)/(mh_5*1.161);\n",
+ "\n",
+ "#Results\n",
+ "\n",
+ "print (\"m_h(kg/h) \\t NTU \\t\\t C \\t\\t e \\t T_he(C) \\t\\t T_he(C)(Heat Balance)\");\n",
+ "print mh_1,\"\\t\\t\",round(NTU_1,3),\"\\t\\t\",round(C,3),\"\\t\\t\",round(e,2),\"\\t\\t \",round(The_1,1),\"\\t\\t\\t\",round(The2_1,1);\n",
+ "print mh_2,\"\\t\\t\",round(NTU_2,3),\"\\t\\t\",round(C,3),\"\\t\\t\",round(e,2),\"\\t\\t \",round(The_2,1),\"\\t\\t\\t\",round(The2_2,1);\n",
+ "print mh_3,\"\\t\\t\",round(NTU_3,3),\"\\t\\t\",round(C,3),\"\\t\\t\",round(e,2),\"\\t\\t \",round(The_3,1),\"\\t\\t\\t\",round(The2_3,1);\n",
+ "print mh_4,\"\\t\\t\",round(NTU_4,3),\"\\t\\t\",round(C,3),\"\\t\\t\",round(e,2),\"\\t\\t \",round(The_4,1),\"\\t\\t\\t\",round(The2_4,1);\n",
+ "print mh_5,\"\\t\\t\",round(NTU_5,3),\"\\t\\t\",round(C,3),\"\\t\\t\",round(e,2),\"\\t\\t \",round(The_5,1),\"\\t\\t\\t\",round(The2_5,1);\n",
+ "\n",
+ "#Graph\n",
+ "mh=[200,250,300,350,400];\n",
+ "The=[29.3,35.2,39.4,43,46.9];\n",
+ "The2=[19.9,31.9,39.9,45.7,50];\n",
+ "\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "\n",
+ "from pylab import *\n",
+ "figure(1); # For Plotting y-x Diagram\n",
+ "%matplotlib inline\n",
+ "\n",
+ "plt.plot (mh,The,'b',mh,The2,'r',[295,295,200],[0,39.2,39.2],'k');\n",
+ "plt.title (\"mh vs The\");\n",
+ "plt.xlabel(\" mh \");\n",
+ "plt.ylabel(\" The \");"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "m_h(kg/h) \t NTU \t\t C \t\t e \t T_he(C) \t\t T_he(C)(Heat Balance)\n",
+ "200 \t\t2.153 \t\t0.832 \t\t0.51 \t\t 29.3 \t\t\t19.9\n",
+ "250 \t\t1.723 \t\t0.832 \t\t0.51 \t\t 35.2 \t\t\t31.9\n",
+ "300 \t\t1.436 \t\t0.832 \t\t0.51 \t\t 39.4 \t\t\t39.9\n",
+ "350 \t\t1.23 \t\t0.832 \t\t0.51 \t\t 43.0 \t\t\t45.6\n",
+ "400 \t\t1.077 \t\t0.832 \t\t0.51 \t\t 46.9 \t\t\t49.9\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEVCAYAAADtmeJyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XlcVNf5P/DP4IKiyFJlIKLihiDI4oZbIsagMSpgtCZo\nDGnNUhtJY1OXJO032l9b0UTTuDRpEtMSE01sowhucYkQ44YiuBu3IIswLgOCINvM/f1xemUwKAiz\nXe7n/XrdV1mGuSe343nuec65z9FIkgQiIlIvB1s3gIiIbIuBgIhI5RgIiIhUjoGAiEjlGAiIiFSO\ngYCISOUYCKjZysrK8nFwcDAajUa7+Zz7+Phk7dmzZ7St20Fkym7+gRAp3Zdffjnd2dm5xNnZucTJ\nyanMwcHBKH/foUOHYgDQaDSSRqPhwztkVxgIiMxk+vTpX5aUlDiXlJQ4b9++fVznzp3z5O+Li4s7\n2Lp9RPfDQECK4uPjk/Xee+/9ISgo6ISzs3PJzJkz1+h0Ou24ceO2u7i43IqIiNhVVFTkavo3X3zx\nxXPdunW70qlTp+t/+9vf3qrrfQ8fPhzm5eWVL0mSRv7Zpk2bJgUHBx8HgLS0tMEDBw486uLicsvT\n07PgjTfeWPagdpq+z70yMjJCg4ODj7u6uhY9++yzX1VUVDjKv9uyZcuEkJCQTDc3t8Lhw4fvP3ny\nZL+GXhuiRpMkiQcPxRw+Pj4/DR069MC1a9c65eXlPeLh4aELDQ09lpmZGVxeXu74+OOP71m0aNH/\nSZKEn376yUej0Rhffvnlf5aXlzseP348yNHRsfzs2bN+db13z549L+7atesJ+fspU6b8Z8mSJfMk\nScKQIUMOfvHFF9MlSUJpaanToUOHwh7Uzr1794Z7e3vn3Pvzbt26ZYWFhR3Kz8/31Ov1bv7+/mc+\n+uijVyRJwrFjx0I9PDx0aWlpg4xGoyYhIeF5Hx+fnyoqKlrb+rrzaN4HRwSkOHFxcSs7dep0/ZFH\nHrn66KOP7hs6dOjB4ODg446OjhWTJk3alJGREWr6+nfeeWeRo6NjRVBQ0Ing4ODjx48fD67rfWNi\nYtavX78+BgDk9E5MTMx6AGjdunXlhQsXet+4caOjk5NTWVhY2OHGtF2j0UivvfbaCk9PzwI3N7fC\niRMnJmdmZoYAwMcff/zyK6+88s9BgwYd0Wg00vPPP/+5o6NjxaFDh4Y05lxEDcVAQIqj1Wp18tdt\n27a9Y/p9mzZtym/fvt3e9PWenp4F8tdOTk5lpaWl7ep632nTpq3buHHj05WVla03btz49IABA9K7\ndOmSAwBr1qyZef78eV9/f/+zgwcPTtu6dev4xrbftD1t27a9I7f3ypUr3ZYtW/aGm5tboXzk5uZ6\n5+fnezX2XEQN0dLWDSBqKukB+fiH4e/vf7Zbt25Xtm/fPm7dunXTpk2btk7+Xa9evS6uW7duGgB8\n8803k6dMmfJfvV7v3rZt2ztNPa+8iqhr167Zb7/99l/feuutvzX1PYkeBkcEpDoPChzTpk1b9/e/\n//31ffv2PfrLX/7yP/LPv/jii+euX7/eCQBcXFxuaTQaycHBwWjO9rz00kuffPTRR79JS0sbLEmS\nprS0tN3WrVvH3zvCITI3BgJSPNN1+feu069rzf6D1vHHxMSs//777x8bPXr0Hnd3d73882+//XZs\nYGDgKWdn55I5c+a8/9VXXz3r6OhY0dB2Peg18usGDBiQ/sknn7w0e/bsVe7u7vrevXtf+Pzzz5+v\n7z2ImkojSXy2hYhIzSwyR+Dj45PVoUOH4hYtWhhatWpVlZaWNliv17s/88wzX1+5cqWbj49P1oYN\nG6a6uroWWeL8RETUcBZJDWk0GiklJSU8IyMjNC0tbTAAxMfHL4iIiNh1/vx539GjR++Jj49fYIlz\nExHRw7HYHMG9E3JJSUmRsbGxCQAQGxubkJiYGG2pcxMRUcNZZI6gR48el11cXG61aNHC8Morr/zz\npZde+sTNza2wsLDQDRBBwt3dXS9/f7cxLMZFRNQoTVlGbZE5gv379w/38vLKv379eqeIiIhdfn5+\n50x//6AKjJy8No+FCxdi4cKFtm5Gs8HraV68ng/p5k3g4EFg/35xHDsG9OwJDB8ODB8OzXPPNent\nLRIIvLy88gGgU6dO1ydNmrQpLS1tsFar1RUUFHh6enoW5Ofne3l4eFyzxLmJiBRNkoDz54EDB2o6\n/rw8ICwMGDYM+OMfgSFDgA4mBW2bGAjMPkdQVlbmVFJS4gwApaWl7Xbu3DmmX79+JyMjI5MSEhJi\nASAhISE2Ojo60dznJiJSnPJy4IcfgCVLgKgowMMDGDMG2LULCA0F1q0D9Hrx/aJF4ncdzFvV3Owj\nAp1Op500adImAKiurm45ffr0L8eMGbNz4MCBR6dOnbphzZo1M+Xlo+Y+N9UIDw+3dROaFV5P81L1\n9dTpau72DxwAjh8H/P1Fmmf6dGD1asDb26pNsqsHyjQajWRP7SEiahKjETh7tibFc+AAcOMGMHSo\nSPMMHw4MHgy0q7MOYoNpNJomTRYzEBARmUtpKZCWVnPHf/Ag8ItfiA5f7vj79gUczJuVZyAgIrKV\nvLyaO/39+4EzZ4CgoLureTB0KODpafFmMBAQEVmDwQCcPFk7zXP7ds2d/vDhwMCBQJs2Vm8aAwER\nkSWUlACHDtV0/GlpwCOP1O74fX0BjVm2w2gSBgIioqaSJODKldpr9y9eBPr3r8nvDx0KdOxo65bW\niYGAiOhhVVUBmZm18/sGQ82d/vDhYg1/69a2bmmDMBAQEdWnsLCmRMOBA8DRo0D37rXTPN2720Wa\npzEYCIiITEkScOlSTYpn/34gO1us15fTPEOGAK6utm6p2TAQEJG6VVQA6em1n9Zt3brmTn/YMCA4\nGGhpkdJqVldWJmrOHTlSc1y8yEBARGpy/bro7OWOPzNTrN4xze936WLrVppFVRVw6pRYsCR3+hcu\nAAEBwKBBNUe/fgwERNRcGY3Ajz/WntTV6URqR87vh4UB7dvbuqVNZjSKTv7IkZqO/8QJwMendqcf\nHAw4Otb+W6aGiKj5KCsTE7lybv/gQcDFpXaaJyAAaNHC1i1tEkkCcnNrp3eOHhXTFoMH13T6/fs3\nrNAoAwERKVd+fu21+6dOAYGBtTt+Ly9bt7LJbt6s3ekfOSJWqw4aVNPxDxwoKlA3BgMBESlHWZmo\nq5+UBOzdC9y6JTp7Oc0zaBDQtq2tW9kkpaViMtc0r3/9OjBgQM2d/uDBQNeu5lutykBARPbt+nUg\nORnYvBlISRG3vlFRQEQE0KeP2StxWlNlpSg/ZJrXv3xZDGpMO31L/2cyEBCR/blwQXT8mzeLnnLM\nGNH5P/UU4OZm69Y1ijxvLd/lp6WJTFaPHrUnc4OCrP9AMgMBEdme0Sh6RrnzLyoCIiNF5//44z9f\n5mLnJAnIyamd3klPF1sL3DuZaw8LlhgIiMg2ysuB774THX9SEuDuLjr+6GiR/lFQyufGjdrpnSNH\nRP7+3slcO605x0BARFak1wPbtgGJicDu3SIPEhUljl69bN26BikpqXkyV+74CwtrJnPljt/bWzml\nhxgIiMiysrJqUj7p6cCoUaLjnzAB6NTJ1q17oIoK8VCWaV4/K0vEL9PJ3N69FTWA+RkGAiIyL0kC\nMjJEx5+YKNb6T5ggUj5PPAE4Odm6hXUyGMRkrml659QpMVAxzesHBiqmunSDMRAQUdNVVgKpqTX5\nfkdH0fFHRYkNWezsSV55HxnTTv/YMfFAlmmnHxoKtGtn69ZaHgMBETVOcTGwfbvo/HfsEIXb5Hy/\nv79dJcivXaud3jlyBGjV6ueTue7utm6pbTAQEFHD5eaKO/7Nm0UdnxEjxJ3/xIl2U8qhuFhMRZh2\n/MXFoqM3zet37mzrltoPBgIiuj9JEolyebL38mXxUFdUFDB2LODsbNPmlZcDx4/XrsGTnS0qbJo+\npNWrl7Incy2NgYCIaquuFgXcEhNF52801qzvHzFC5FRs4M4d8ZBxRoY4jh4FzpwRGSnTvH5AgM2a\nqFgMBEQkKp19+63o+LduBbp1q8n3BwVZPd9fVCT2i5E7/YwMsXukr6+YwA0NFamekBC7XYSkKAwE\nRGql09UUc0tNFRu0REWJ0g5du1qtGfn5tTv8Y8fE5G5QkCjBIHf8AQGKqzShGAwERGry4481KZ8z\nZ0SePzoaGDfO4puxS5KYYpA7e7njr66u6ezlo3dvu1tx2qwxEBA1Z0YjcOhQzWTv7ds1xdzCwy12\ni11VBZw7V7vDz8wUm4WZdvj9+yurFENzxUBA1NzcuQPs2SPu/LdsEWUc5Hz/gAFmXz5TVibKMJim\nd86cEfu/y519aKjI59tr0TW1YyAgag5u3hSd/ubNIgiEhIiUT2Qk0LOn2U5TWPjzfH5Wlnh+zPRO\nPyjIPsorU8MwEBAp1eXLNSmfjAxg9Ghx1z9+fJNvvSUJuHq1doefkSGKhwYH1+70+/ZtfrV31IaB\ngEgpJEksnpc7/2vXxBO9UVGimFsj9+o1GsXSTNN8fkaG+N29k7h8MKt5YiAgsmeVlWKTdrmYW7t2\nNcXcwsIeemlNZaXI35t2+MePixo7pvn80FDgkUc4iasWdhsIDAZDi4EDBx719vbOTU5OnqjX692f\neeaZr69cudLNx8cna8OGDVNdXV2LajWGgYCag6KimmJu334rEvDyZK+fX4PfprRUdPKmnf7Zs0D3\n7rXv8kNC1FtsjQS7DQTLly//fXp6+oCSkhLnpKSkyHnz5i3t2LHjjXnz5i1dsmTJ/MLCQrf4+PgF\ntRrDQEBKlZNTk/I5fBh47DFx5z9hAuDpWe+f37z580ncnByRv793EpdP4tK97DIQ5Obmer/wwgv/\nfvvtt/+6fPny3ycnJ0/08/M7l5qaOlKr1eoKCgo8w8PDU86dO1fr9oiBgBRDksSaS7nzv3JFTPJG\nRQFjxtx3yY0kiQKg907i3rol7uxN1+f7+bHmDjVMUwNBS3M2RjZnzpz333333bnFxcUd5J/pdDqt\nVqvVAYBWq9XpdDptXX+7cOHCu1+Hh4cjPDzcEk0kenhVVcC+fTX5fo1GdPzLlolibi1r/3MyGIAL\nF2rf6WdkiJfJHf6MGcDy5SLdw0lcaqiUlBSkpKSY7f3MHgi2bNkywcPD41poaGhGSkpKeF2v0Wg0\nkkajqfPW3zQQENmFc+eAVauA9etFjx0dLQJBYODd2diKCuD0PQ9lnTghdsySO/05c8T/2knZf1Kw\ne2+SFy1a1KT3M3sgOHDgwLCkpKTIbdu2PVVeXt6muLi4w4wZM9bKKSFPT8+C/Px8Lw8Pj2vmPjeR\n2RgMwLZtwMqVokd/6SXRu3ftipKS/03irqrp9H/8UTz3JXf6U6aIVI+Fy/8QmYVFl4+mpqaOfO+9\n9/6QnJw8cd68eUt/8Ytf3Jw/f/6S+Pj4BUVFRa6cLCa7U1QEfPYZsHo14O6OqlmvIb3nVOw/6nh3\nX9y8PDEYMM3nBwY2+jEAoiazyzkCU3IKaMGCBfFTp07dsGbNmpny8tH7vN7STSL6GbcOHaCPiYHx\nq6+R2+8pbAr7El9dDsOJOA38/MT+7ePHA3/6E9Cnz8+mA4gUjQ+UkWpVlRuQtTIZjp+sRLcL32GZ\ny0KscXgZPUd4YehQ0fkPGiSeASOyZ3a5fLSxGAjIknQ6sV975nd6eCR/ivFX/oGitl44OiQOL343\nHefPS+jVi0/jkvIwEBDVobpa7I974IDo/A8eBDyvn8AfXVYi/MZ/UTRiIpzfjkP78EEA7v5DsnGr\niRrH7ucIiKzhxg2xf8vBg6LzP3pU7NY4PKwav3JOxD/dV8Kp/CI0r8wCXv4RbT08bN1kIrvBEQEp\njsEgCq+Z3u0XFACDB4u8/rBhwJBeN+D6n0+ADz8UESEuDnj66fs+qssRASkZU0PU7BUV1b7bT0sD\ntFrR4cuTugEB/yvkeeyYWPufmAhMmiQCQGhovedgICAlY2qImhWjUTycJXf6Bw8C2dnAwIGiw//d\n74AhQ+7Zt6WqCvjvRhEAsrOBWbNEbQfuq0jUIBwRkE0VF4s7fDnFc+iQeBrX9G4/KOg+6/Z1OuDj\nj4GPPgJ69xZ3/1FRjVrkzxEBKRlTQ6QYkgRcvFj7bv/SJZG5uZvbH9KAqs1Hjoi7/+RkUcshLk5E\niyZgICAlYyAgu1VaKvps+W7/4EFRhkHu9IcOFfV4GrRfbmUl8N//AitWiJnhV18FZs40244sDASk\nZAwEZBckCcjKqn23f+6cuFGXUzxDhwLe3g/5xvn5wD//KY6+fcXd/8SJD73FY30YCEjJOFlMNnHn\nDpCeXnOnf+CAqKcv3+1PmyaKsbVp04g3lySxy9eKFWLLx2efBXbvFkuDiMjsOCKgBsnJqX23f+qU\n2IpXTvEMGyaW6zepPENFBfD11yL/r9eL9M+vfgW4uZntv+N+OCIgJWNqiMyuokLU2De926+srEnv\nDBsmlnOabe/cvDyx8ufjj8WkQVwcMG6c2dM/D8JAQErGQEBNlp9f+24/M1OsxjRdwtmzp5mLsUkS\nsH+/uPvfuROYPh2YPVts1GsDDASkZAwE9FCqqsTuWqZ3+8XFte/2Bw0CnJ0t1IA7d4CvvhL5/9u3\nRef/wguAi4uFTtgwDASkZAwE9EDXr9e+209PB3x8ai/h9PW1wsbp2dmi7s+aNcCAAcBrrwFjx9rN\nju0MBKRkDARUi8EgMi6bNgFbt4qHb4cMqbnjDwuz4j66kgR8/71I/3z3HTBjhpgA9vW1UgMajoGA\nlIyBgFBeDuzaJeqsJScDnTsD0dFAZKRYx2/FOVehrAz48ksRACorxeTv889bMN/UdAwEpGQMBCpV\nVCTu+DdtEkEgJEQU24yKArp3t1GjsrKAf/wD+Ne/xDAkLg544gm7Sf88CAMBKRkfKFORq1eBzZtF\n53/oEDBypOj8P/wQ6NTJRo2SJJH2WbkS2LcPiI0VjevZ00YNIqKHxRGBnfvxR9HxJyYC588DTz0l\n0j5PPgm0b2/DhpWWAmvXAqtWiWAQFwc895yNG9V4HBGQkjE11MxIkthmcdMmcdy6JTr+SZPECKBB\nBdos6dIlYPVqICEBePRRsfpn1CjF7/jOQEBKxtRQM1BVBaSmirv+xESgXTvR8f/732JNv81T7JIk\nJiJWrhRrUH/965p1qESkeAwENlJaCnz7rej4t24VKfVJk0R/6+9v69b9T0mJuPNftUoMReLiRC0g\ns9WWICJ7wNSQFd24AWzZIlI+e/eKNf3R0WKlz0OXZ7akCxdE5792LfD44yIAPPaY4tM/D8LUECkZ\nU0N27sqVmpTPsWNiNeWUKSLtY4Wimg1nNIohyooVIu0zc6YoOtS1q61bRkQWxhGBmUkScPp0zUqf\nK1fEPiqTJgEREWKHLrty65aISqtXixU/cXGi/r/dNdSyOCIgJeOqITtgNIo51MREEQCqqkTHHx0N\njBjRqL3ULe/sWZH+WbcOGDNGBIDhw5t1+udBGAhIyZgaspGKCvEc1aZNQFIS4OEhOv7//Ec85WuX\n/anBAGzbJlb/HD8OvPyy2GGmc2dbt4yIbIiB4CEUF4udEzdtAnbsAAIDRef/ww9Ar162bt0DFBUB\nn30m0j/u7uLuPympkftIElFzw9RQPXQ6UdYhMVF0+CNGiLTPxImAp6etW1eP06fF3f/XX4tHkuPi\nxFIluxyu2BZTQ6RkTA1ZwKVLNZO9p06Jcg6xsWI/lQ4dbN26BiguBhYsADZuBH7zG+DMGcDLy9at\nIiI7xUAAsdInI6Nmsvf6dbG2/+23xTJ6R0dbt/AhJCWJmv9PPikmhO1qjSoR2SPVpoaqq0WqR17j\n37KlSPlMmiSyJ1av4d9UBQWi7k9GhtgEftQoW7dIUZgaIiVjaugh3LkjSjhs2iSe8O3aVUz2btkC\nBAQoNHUuSaL+/4IF4iGwhATVPQNARE3T7EcEhYWio09MBHbvBvr3r9nApVs3s57K+i5eFEtAi4uB\nTz8V61apUTgiICVr6ojA7HUty8vL24SFhR0OCQnJ7Nu375k333xzMQDo9Xr3iIiIXb6+vufHjBmz\ns6ioyGI75+bliZWSTzwhOvtvvhGrfC5dEjV+XntN4UGgqgpYskTsAjZhgtgIhkGAiBrJIiOCsrIy\nJycnp7Lq6uqWI0aM+OG99977Q1JSUmTHjh1vzJs3b+mSJUvmFxYWusXHxy+o1ZgmjAjOnq2Z7L10\nCRg/XqR9xo4VZZ2bjfR04MUXxZZkH30E9Ohh6xY1CxwRkJLZ3YgAAJycnMoAoLKysrXBYGjh5uZW\nmJSUFBkbG5sAALGxsQmJiYnRTTmH0QgcPixS435+oo5PXh6weLGYN/38c+Dpp5tRECgrA+bOFc8D\nzJkjCsQxCBCRGVhksthoNDr079//2KVLl3rOmjXrw4CAgNM6nU6r1Wp1AKDVanU6nU5b198uXLjw\n7tfh4eEIDw+/+31lpdjAZdMm8ZCXi4vI969dCwwcqNDJ3obYtQt45RVg6FDg5ElRz4KIVCslJQUp\nKSlmez+LThbfunXLZezYsd8uXrz4zaeffnpjYWHh3UXt7u7uer1e716rMXWkhm7fFuUcEhNFmRxf\n35qCbn36WKzp9uHmTeCNN8TExocfitEAWQRTQ6Rkdpkakrm4uNwaP3781vT09AFarVZXUFDgCQD5\n+fleHh4e1+73d9evi9I4kZHAI48An3wiCmOeOiXmRefPb+ZBQJLEY8yBgWLYc+oUgwARWYzZA8GN\nGzc6yiuC7ty503bXrl0RoaGhGZGRkUkJCQmxAJCQkBAbHR2dWNffjxwpCrht3y7K4mdni3T4rFki\nKDR72dliidNf/iJyYB98ADg727pVRNSMmT01dPLkyX6xsbEJRqPRwWg0OsyYMWPt3Llz39Xr9e5T\np07dkJ2d3dXHxydrw4YNU11dXYtqNUajkZKTJTzxhAoLYxoMwD/+ASxaBLz+OjBvntgnmKyCqSFS\nMm5M0xycPi2WhLZsKfJgfn62bpHqMBCQktn1HAHVo6ICeOcdIDxclDdNTWUQICKrU1WtIbuyf78Y\nBfTpIzaJ5y5hRGQjDATWJu8VkJgoNo15+ulm/AAEESkBU0PWlJQkypxWVYl5gcmTGQSIyOY4IrAG\n070CPv+cewUQkV3hiMCSJEk8GRcUBPTsCZw4wSBARHaHIwJLMd0rYOdOlokmIrvV4BFBWVmZkyUb\n0mxUV3OvACJSlHoDwYEDB4b17dv3TJ8+fX4EgMzMzJDf/va3/7B80xTo2DFg8GBgzx4gLQ34/e/F\nQ2JERHas3kDw+uuv/33Hjh1PduzY8QYAhISEZKampo60fNMURN4rYNw4UR6CewUQkYI0KDXUtWvX\nbNPvW7ZsWW2Z5ijQ7t1Av37A1atir4Dnn+eSUCJSlHrzFl27ds3ev3//cEDsOLZixYrX/P39z1q+\naXbu5k3gD38AvvuOewUQkaLVOyL48MMPZ61evfrVvLy8zp07d87LyMgIXb169avWaJxdMt0roEMH\n7hVARIrH6qMPIzsb+O1vgStXRJXQIUNs3SIyE1YfJSVravXRelND165d8/jkk09eysrK8qmurm75\nv5NKn3322a8be1LFMRhE+mfRIuB3vwM2buReAUTUbNQbCKKiojY/9thj30dEROxycHAwAiIQWL5p\nduL0aeCll8Qy0H37WCaaiJqdelNDISEhmZmZmVZ5IsquUkMVFcDf/iZ2DfvLX0QwcGBFjuaKqSFS\nMotvTDNhwoQtW7duHd/YEyjS/v1AaChw/LjYK+CVVxgEiKjZuu+IoH379rflFFBpaWm71q1bV7Zq\n1aoKEHfuxcXFHczeGFuPCIqLgTffFHsFrFjBvQJUhCMCUjKLTRafPn06oFu3blca+8aKk5QEvPqq\neDr41CnAzc3WLSIisor7jgj69+9/7NixY/2t2hhbjAjkvQIyM4GPPxb7B5PqcERASmaxOYKmvKki\nmO4V0KuXmA9gECAiFbrviMDDw+Pas88++1VdAUGj0UgrVqx4zeyNsdaI4OJFMQFcXAx8+ikQHGz5\nc5Jd44iAlMxicwRt27a9M2DAgHRJkjSmzw3c+72iVFcDy5cDS5cCb70lUkIsE01EKnffXtDd3V0f\nGxubYM3GWNSxY8CLLwKdOgFHjgDdu9u6RUREduG+cwSOjo4V1myIxZjuFTBnDrBjB4MAEZGJ5l10\nbvduMRcwZAjw/vuAh4f53puaFc4RkJJZvOicIsl7BezdK4rFjRtn6xYREdmt5lU3wXSvABcX8WAY\ngwAR0QM1nxGB6V4BiYlAWJitW0REpAjKHxEYDMCqVcCAAWIuID2dQYCI6CEoe0TAvQKIiJpMmSOC\nigrgnXdESYjYWCAlhUGAiKiRlDci2L9fjAJ8fUWhuM6dbd0iIiJFU04g4F4BREQWoYzUUFISEBAA\nVFWJJaGTJzMIEBGZidkDQU5OTpdRo0btDQgIOB0YGHhKrlKq1+vdIyIidvn6+p4fM2bMzqKiItd6\n36ygAJg6VTwctnat2C+AG8YQEZmV2QNBq1atqt5///05p0+fDjh06NCQ1atXv3r27Fn/+Pj4BRER\nEbvOnz/vO3r06D3x8fEL7vsm3CuAiMhqLF5rKDo6OnH27NmrZs+evSo1NXWkVqvVFRQUeIaHh6ec\nO3eu1lIfjUYjSRcucK8AsjrWGiIls+taQ1lZWT4ZGRmhYWFhh3U6nVar1eoAQKvV6nQ6nbauv1kY\nFAQ8+igwbhzCCwsRbskGEhEpUEpKClJSUsz2fhYbEdy+fbv9yJEjU//0pz/9v+jo6EQ3N7fCwsLC\nuwl+d3d3vV6vd6/VGI1Gki5fZplosjqOCEjJLLZncVNUVVW1mjx58jczZsxYGx0dnQiIUUBBQYEn\nAOTn53t5eHhcq/OPGQSIiKzK7IFAkiTNzJkz1/Tt2/fM66+//nf555GRkUkJCQmxAJCQkBArBwgi\nIrIts6eGfvjhhxGPPfbY90FBQSfkvY0XL1785uDBg9OmTp26ITs7u6uPj0/Whg0bprq6uhbVaoy1\nNq8nugdd0CTvAAAKHklEQVRTQ6RkTU0NNe8dyogaiIGAlMwu5wiIiEg5GAiIiFSOgYCISOUYCIiI\nVI6BgIhI5RgIiIhUjoGAiEjlGAiIiFSOgYCISOUYCIiIVI6BgIhI5RgIiIhUjoGAiEjlGAiIiFSO\ngYCISOUYCIiIVI6BgIhI5RgIiIhUjoGAiEjlGAiIiFSOgYCISOUYCIiIVI6BgIhI5RgIiIhUjoGA\niEjlGAiIiFSOgYCISOUYCIiIVI6BgIhI5RgIiIhUjoGAiEjlGAiIiFSOgYCISOUYCIiIVI6BgIhI\n5cweCH79619/ptVqdf369Tsp/0yv17tHRETs8vX1PT9mzJidRUVFruY+LxERNY7ZA8GvfvWrf+3Y\nseNJ05/Fx8cviIiI2HX+/Hnf0aNH74mPj19g7vMSEVHjaCRJMvubZmVl+UycODH55MmT/QDAz8/v\nXGpq6kitVqsrKCjwDA8PTzl37pzfzxqj0UiWaA9RfTQaDfjZI6X63+dX09i/b2nOxtyPTqfTarVa\nHQBotVqdTqfT3u+1CxcuvPt1eHg4wsPDLd4+IiIlSUlJQUpKitnezyojAjc3t8LCwkI3+ffu7u56\nvV7v/rPGcERANsIRASlZU0cEVlk1JKeEACA/P9/Lw8PjmjXOS0RE9bNKIIiMjExKSEiIBYCEhITY\n6OjoRGucl4iI6mf21FBMTMz61NTUkTdu3Oio1Wp1f/7zn/8vKipq89SpUzdkZ2d39fHxydqwYcNU\nV1fXop81hqkhshGmhkjJmpoassgcQWMxEJCtMBCQkilijoCIiOwXAwERkcoxEBARqRwDARGRyjEQ\nEBGpHAMBEZHKMRAQEakcAwERkcoxEBARqRwDARGRyjEQEBGpHAMBEZHKMRAQEakcAwERkcoxEBAR\nqRwDARGRyjEQEBGpHAMBEZHKMRAQEakcAwERkcoxEBARqRwDARGRyjEQEBGpHAMBEZHKMRAQEakc\nAwERkcoxEBARqRwDARGRyjEQEBGpHAMBEZHKMRAQEakcAwERkcoxEBARqRwDARGRyjEQEBGpHANB\nM5WSkmLrJjQrvJ7mxetpX6waCHbs2PGkn5/fud69e19YsmTJfGueW234D828eD3Ni9fTvlgtEBgM\nhhazZ89etWPHjifPnDnTd/369TFnz571t9b5iYioblYLBGlpaYN79ep10cfHJ6tVq1ZVzz777Feb\nN2+Ostb5iYiobi2tdaK8vLzOXbp0yZG/9/b2zj18+HDYva/TaDTWalKzt2jRIls3QVHq++zxepoX\nr6f9sFog0Gg0Un2vkSSJUYCIyMqslhrq3LlzXk5OThf5+5ycnC7e3t651jo/ERHVzWqBYODAgUcv\nXLjQOysry6eysrL1119//UxkZGSStc5PRER1s1pqqGXLltWrVq2aPXbs2G8NBkOLmTNnrvH39z9r\nrfMTEVHdrDYiyMnJ6bJ06dJ5LVu2rG7Tpk15u3btSgFAr9e7R0RE7PL19T0/ZsyYnUVFRa7y3yxe\nvPjN3r17X/Dz8zu3c+fOMdZqqxLk5OR0GTVq1N6AgIDTgYGBp1asWPEaACxcuHCht7d3bmhoaEZo\naGjG9u3bx8l/w+t5f+Xl5W3CwsIOh4SEZPbt2/fMm2++uRjg57Ox7nc9+flsPIPB0CI0NDRj4sSJ\nyYCZP5uSJFnlyM/P98zIyAiRJAklJSXtfX19fzxz5oz/3Llzly5ZsmSeJEmIj4+fP3/+/HhJknD6\n9Om+wcHBmZWVla1++uknn549e140GAwO1mqvvR/3u54LFy58Z9myZb+/9/W8nvUfpaWlTpIkoaqq\nqmVYWNihffv2jeDn07zXk5/Pxh/Lli37/bRp076cOHFikiRJMOdn02ojAk9Pz4KQkJBMAGjfvv1t\nf3//s3l5eZ2TkpIiY2NjEwAgNjY2ITExMRoANm/eHBUTE7O+VatWVT4+Plm9evW6mJaWNtha7bV3\n97ueQN2rr3g96+fk5FQGAJWVla0NBkMLNze3Qn4+G6+u6wnw89kYubm53tu2bXvqxRdf/FS+fub8\nbNqk1lBWVpZPRkZGaFhY2GGdTqfVarU6ANBqtTqdTqcFgKtXrz5iuqrI29s7V+7oqDb5eg4ZMuQQ\nAKxcuTIuODj4+MyZM9fIw0Vez/oZjUaHkJCQTK1Wq5PTbvx8Nl5d1xPg57Mx5syZ8/67774718HB\nwSj/zJyfTasHgtu3b7efPHnyNx988MHvnJ2dS0x/p9FopAc9b9CQZxHU5vbt2+2nTJny3w8++OB3\n7du3vz1r1qwPf/rpp+6ZmZkhXl5e+W+88cay+/0tr2dtDg4OxszMzJDc3Fzv77///rG9e/eOMv09\nP58P597rmZKSEs7P58PbsmXLBA8Pj2uhoaEZdY2mgKZ/Nq0aCKqqqlpNnjz5mxkzZqyNjo5OBEQk\nKygo8ASA/Px8Lw8Pj2vAz587yM3N9e7cuXOeNdtr7+Tr+dxzz30hX08PD49r8ofixRdf/FQeEvJ6\nNpyLi8ut8ePHb01PTx/Az2fTydfz6NGjA/n5fHgHDhwYlpSUFNm9e/efYmJi1n/33XePz5gxY61Z\nP5vWmugwGo2aGTNmfP7666+/b/rzuXPnLo2Pj58vSRIWL1684N4Jj4qKitaXL1/u3qNHj0tGo1Fj\n6wkbeznudz2vXr3qJX+9fPnyOTExMet4Pes/rl+/3rGwsNBVkiSUlZW1ffTRR7/fvXv3aH4+zXs9\n8/PzPeXX8PP58EdKSsrICRMmJEuSeftOq/0H7Nu3b4RGozEGBwdnhoSEZISEhGRs3779yZs3b7qP\nHj16d+/evc9HRETslD88kiThr3/961s9e/a82KdPn3M7duwYa+v/E+zpqOt6btu2bdyMGTM+79ev\n34mgoKDjUVFRiQUFBVpez/qPEydO9AsNDT0WHByc2a9fvxNLly6dK0kS+Pk07/Xk57NpR0pKykh5\n1ZA5P5saSWIajohIzbhDGRGRyjEQEBGpHAMBEZHKMRAQEakcAwFRI/373/9+IS4ubqWt20HUVAwE\nRI3EJ1+puWAgIKpD+/btb8+bN29pYGDgqYiIiF2HDh0aMnLkyNSePXteSk5Onii/7urVq4+MGzdu\nu6+v7/n58+cvsWWbiRrN1g9I8OBhj4dGozHKD+JMmjRpY0RExM7q6uoWx48fDwoJCcmQJAn/+te/\nXujRo8el4uJi5/Lycsdu3bpl5ebmdrZ123nweNjDajuUESlJ69atK8eOHfstAPTr1+9kmzZtylu0\naGEIDAw8lZWV5SO/bvTo0Xvk4ol9+/Y9k5WV5cMaOaQ0TA0R1aFVq1ZV8tcODg7G1q1bV8pfV1dX\n372BcnR0rJC/btGihcFgMLSwbkuJmo6BgMiMpPuUCSayZwwERHW4d0WQ6ffy13XVgOdKIlIiFp0j\nIlI5jgiIiFSOgYCISOUYCIiIVI6BgIhI5RgIiIhUjoGAiEjl/j9fZuqpxURX8wAAAABJRU5ErkJg\ngg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x4f73e30>"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file