summaryrefslogtreecommitdiff
path: root/Strength_Of_Materials_by_S_S_Bhavikatti/chapter_2.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Strength_Of_Materials_by_S_S_Bhavikatti/chapter_2.ipynb')
-rw-r--r--Strength_Of_Materials_by_S_S_Bhavikatti/chapter_2.ipynb126
1 files changed, 84 insertions, 42 deletions
diff --git a/Strength_Of_Materials_by_S_S_Bhavikatti/chapter_2.ipynb b/Strength_Of_Materials_by_S_S_Bhavikatti/chapter_2.ipynb
index efb0de99..1e3b556e 100644
--- a/Strength_Of_Materials_by_S_S_Bhavikatti/chapter_2.ipynb
+++ b/Strength_Of_Materials_by_S_S_Bhavikatti/chapter_2.ipynb
@@ -28,6 +28,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"P=45*10**3 #N #Load\n",
@@ -60,7 +61,7 @@
]
}
],
- "prompt_number": 47
+ "prompt_number": 1
},
{
"cell_type": "heading",
@@ -75,6 +76,8 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
+ "\n",
"\n",
"#Initilization of Variables\n",
" \n",
@@ -104,7 +107,7 @@
]
}
],
- "prompt_number": 48
+ "prompt_number": 2
},
{
"cell_type": "heading",
@@ -119,6 +122,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -153,7 +157,7 @@
]
}
],
- "prompt_number": 49
+ "prompt_number": 3
},
{
"cell_type": "heading",
@@ -168,6 +172,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -220,7 +225,7 @@
]
}
],
- "prompt_number": 50
+ "prompt_number": 4
},
{
"cell_type": "heading",
@@ -235,6 +240,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"%matplotlib inline\n",
"\n",
"#Initilization of Variables\n",
@@ -298,7 +304,7 @@
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEPCAYAAACp/QjLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xt0lOW1x/HvAEFbQtEqBEg4JxzuIVdBEBEbhEAVE1EQ\nDXIpIFosFhDlgAu5KEJol/UAgraCbSoUSvEUsC0UFIIQLJdwC4YW1ERCEqIYwyWIhOQ5f7xlDiET\nQkJm3rn8PmtlrTAzmexn6Zqdvd/3ebbDGGMQERG5Qj27AxAREe+j5CAiIpUoOYiISCVKDiIiUomS\ng4iIVKLkICIilbgtOeTm5tK7d286d+5MZGQkCxcuBKCoqIiEhATat29Pv379KC4udv7MvHnzaNeu\nHR07dmTTpk3uCk1ERKrhcNc+h5MnT3Ly5EliY2M5d+4cXbp0Ye3atfz2t7/l9ttvZ8qUKcyfP59v\nvvmGlJQUsrKyGDp0KHv27CEvL4++ffty9OhR6tVTcSMi4mlu++Rt3rw5sbGxAAQHB9OpUyfy8vJY\nv349I0eOBGDkyJGsXbsWgHXr1pGcnExQUBDh4eG0bduW3bt3uys8ERG5Bo/8WZ6Tk8P+/fvp3r07\nhYWFhISEABASEkJhYSEA+fn5hIWFOX8mLCyMvLw8T4QnIiJXcXtyOHfuHIMGDWLBggU0bty4wnMO\nhwOHw1Hlz17rORERcZ8G7nzz0tJSBg0axPDhwxk4cCBgVQsnT56kefPmFBQU0KxZMwBCQ0PJzc11\n/uyJEycIDQ2t9J5t27bls88+c2fYIiJ+p02bNnz66afX/Xq3VQ7GGMaMGUNERAQTJ050Pp6UlERq\naioAqampzqSRlJTEqlWruHjxItnZ2Rw7doxu3bpVet/PPvsMY4zffs2cOdP2GLQ2rU/r87+vmv5R\n7bbKIT09neXLlxMdHU1cXBxg3ao6depUhgwZwrJlywgPD2f16tUAREREMGTIECIiImjQoAFLlixR\nW0lExCZuSw733HMP5eXlLp/74IMPXD7+4osv8uKLL7orJBERuU7aROBl4uPj7Q7Bbfx5baD1+Tp/\nX19NuW0TnLs4HA58LGQREdvV9LNTlYOIiFSi5CAiIpUoOYiISCVKDiIiUomSg4iIHzt8GB58sOY/\np+QgIuKHzpyByZPhvvvg/vtr/vNKDiIifsQY+MMfoFMnKC62Koef/azm7+PWg/dERMRzDh+G8ePh\n9GlYswZ69Kj9e6lyEBHxcVe2kIYMgb17bywxgJKDiIjPctVCeuYZqF//xt9bbSURER9Uly0kV1Q5\niIj4EHe0kFxRchAR8QHubCG5oraSiIiXc3cLyRVVDiIiXspTLSRXlBxERLyMp1tIrqitJCLiRexo\nIbmiykFExAvY2UJyRclBRMRG3tBCckVtJRERm3hLC8kVVQ4iIh7mbS0kV5QcREQ8xFtbSK6orSQi\n4gHe3EJyRZWDiIgb+UILyRUlBxERN/ClFpIraiuJiNQxX2shuaLKQUSkjvhqC8kVJQcRkRvk6y0k\nV9RWEhG5Af7QQnJFlYOISC34UwvJFSUHEZEa8McWkitqK4mIXCd/bSG5ospBRKQa/t5CckXJQUSk\nCoHSQnJFbSURERcCqYXkiioHEZErBGILyRUlBxERAruF5IraSiIS8D75BH72s8BtIbmiykFEAlZp\nKbz8MsTHw6OPBm4LyRVVDiISkA4cgJ/8BFq2hH37oFUruyPyLqocRCSgXLwIM2ZAv34waRL89a9K\nDK6ochCRgLF3L4waBf/1X1bl0LKl3RF5L1UOIuL3LlyAqVNhwACYNg3WrlViqI4qBxHxax9/DKNH\nQ+fOcOgQhITYHZFvUHIQEb90/jy89JK1d2HhQutuJLl+bm0rjR49mpCQEKKiopyPzZo1i7CwMOLi\n4oiLi2PDhg3O5+bNm0e7du3o2LEjmzZtcmdoIuLHtm+H2FjIz7eqBSWGmnMYY4y73nz79u0EBwcz\nYsQIMjMzAZg9ezaNGzfmueeeq/DarKwshg4dyp49e8jLy6Nv374cPXqUevUq5i+Hw4EbQxYRH1ZS\nYl1TeO89WLwYBg60OyLvUdPPTrdWDr169eLWW2+t9LirANetW0dycjJBQUGEh4fTtm1bdu/e7c7w\nRMSPbN0KUVHW0ReZmUoMN8qWu5UWLVpETEwMY8aMobi4GID8/HzCwsKcrwkLCyMvL8+O8ETEh5w9\nC+PGwYgRsGgR/P738MMf2h2V7/P4Belx48YxY8YMAF566SUmT57MsmXLXL7W4XC4fHzWrFnO7+Pj\n44mPj6/rMEXEB2zaBE89BX36WNXCLbfYHZH3SEtLIy0trdY/7/Hk0KxZM+f3Tz75JImJiQCEhoaS\nm5vrfO7EiROEhoa6fI8rk4OIBJ7Tp61jtTdvht/8Bvr3tzsi73P1H86zZ8+u0c97vK1UUFDg/P7P\nf/6z806mpKQkVq1axcWLF8nOzubYsWN069bN0+GJiJf7298gMhIaNLCqBSUG93Br5ZCcnMy2bds4\ndeoUrVq1Yvbs2aSlpXHgwAEcDgetW7fm17/+NQAREREMGTKEiIgIGjRowJIlS6psK4lI4Ckqss5C\n2r4dUlOtYTziPm69ldUddCurSOBZt84avDNoEMydC8HBdkfke2r62akd0iLitU6dgp//HPbsgVWr\noFcvuyMKHDp4T0S80po11r6FFi3g4EElBk9T5SAiXuXLL62RnZmZ8L//q8lsdlHlICJewRhYuRKi\no615C/v3KzHYSZWDiNiuoMDa5fzpp/D++3DnnXZHJKocRMQ2xli3pcbEWNcXMjKUGLyFKgcRscWJ\nE/D005CXB3//O8TF2R2RXEmVg4h4lDGwdKmVDLp3h927lRi8kSoHEfGYL76AsWOt3c5btlitJPFO\nqhxExO3Ky+HNN6FrV+jdG/7xDyUGb6fKQUTc6vPP4cknrZnO27ZBRITdEcn1UOUgIm5RXg4LF0K3\nbvDAA5CersTgS1Q5iEidO3YMRo+2Lj7v3Ant29sdkdSUKgcRqTNlZfDaa9bO5sGDrTaSEoNvUuUg\nInXiyBGrWrjpJti1C9q0sTsiuRGqHETkhly6BCkp1qmpw4dbt6gqMfg+VQ4iUmuHD8OoUXDLLbB3\nL4SH2x2R1BVVDiJSY6Wl8Mor1p6Fp5+GTZuUGPyNKgcRqZEDB6xqoUUL2LcPWrWyOyJxB1UOInJd\nLl6EGTOgXz+YMAH++lclBn+mykFEqrVnj3UnUuvWVuXQsqXdEYm7qXIQkSqVlMDkyZCYCNOmwbp1\nSgyBQslBRFz6+98hMtKa6ZyZCUOHgsNhd1TiKWoriUgFp07Bc8/B9u3w1lvQv7/dEYkdVDmICGCd\ng/SHP1jVwu23W9WCEkPgUuUgInzxBYwbZ43uXL/eOklVApsqB5EAVlYGCxZAly5wzz2QkaHEIJYq\nK4dRo0a5fNzx7ytS77zzjnsiEhGPyMy0hvDcfLM1a6FDB7sjEm9SZXIYMGAADocDY4wzIeTm5vKr\nX/2KsrIyjwUoInXrwgV49VXrYvPcuTBmDNRTD0Gu4jDGmOpe9NlnnzFv3jw++ugjJk2axJgxY2jY\nsKEn4qvkcsISkZrbvh3GjoXOnWHRIu1ZCCQ1/ey8ZnI4cuQIr776Kvv27eOFF15g+PDhNGhg7zVs\nJQeRmjt9Gv77v+H9962k8MgjdkcknlbTz84qi8nBgwczYMAAevToQVpaGklJSZw5c4aioiKKiorq\nJFgRcb8//9mqFIyBTz5RYpDrU2XlEP7v83cdVWyJzM7OdltQ16LKQeT65OfDs89aMxfefhvuvdfu\niMROddpWqsqVF6k9TclB5NrKy2HZMnjxRWvWwvTp1h1JEtjqrK102YwZMyr8u6ysjGHDhtU8MhFx\nu6NH4b77rErhww9hzhwlBqmdapPD8ePHmTdvHgDfffcdjzzyCO3atXN7YCJy/UpLrdtS774bBg6E\njz+G6Gi7oxJfVm1bqby8nCeeeILo6Gi2bNnCAw88wKRJkzwVXyVqK4lUtGePtZmtRQtr74LGdYor\ndXbNISMjw3ldobS0lKeffpq7776bJ598EoA77rijDsKtOSUHEUtJCbz0knVY3muv6UhtubY6Sw7x\n8fEVLjpffRF669atNxBm7Sk5iFizFn76U+s8pF/9Cpo2tTsi8XYeuVvJTkoOEsg0a0Fqq87vVhIR\n+xkDK1Zo1oJ4juY5iHi5L76wWkh5eZq1IJ6jykHES105a6FXL81aEM+6rsohPT2dnJwcLl26BFi9\nqxEjRrg1MJFAplkLYrdqk8OwYcP4/PPPiY2NpX79+s7HlRxE6t6FC9au5l//WrMWxF7VJoeMjAyy\nsrJsO0tJJFB89JE1ayEyEg4e1KwFsVe1f5NERkZSUFDgiVhEAtLp09YF5+RkmDcP3ntPiUHsV21y\n+Oqrr4iIiKBfv34kJiaSmJhIUlLSdb356NGjCQkJISoqyvlYUVERCQkJtG/fnn79+lFcXOx8bt68\nebRr146OHTuyadOmWixHxLdo1oJ4q2o3waWlpbl8PD4+vto33759O8HBwYwYMYLMzEwApkyZwu23\n386UKVOYP38+33zzDSkpKWRlZTF06FD27NlDXl4effv25ejRo9S7quGqTXDiDzRrQTytpp+d1V5z\nuJ4kUJVevXqRk5NT4bH169ezbds2AEaOHEl8fDwpKSmsW7eO5ORkgoKCCA8Pp23btuzevZu77rqr\n1r9fxNtcPWthxQodqS3eqcrk0LNnT9LT0wkODq50MdrhcHDmzJla/cLCwkJCQkIACAkJobCwEID8\n/PwKiSAsLIy8vLxa/Q4Rb3T0KDz1FJw/b81a0JHa4s2qTA7p6ekAnDt3zm2/3OFwXPMuqKqemzVr\nlvP7+Pj4G6puRNyttBR++UvrgLzp06120hV3hYu4RVpaWpWXBa6Hx4/PCAkJ4eTJkzRv3pyCggKa\nNWsGQGhoKLm5uc7XnThxgtDQUJfvcWVyEPFmV85a2LtXsxbEc67+w3n27Nk1+nmPb69JSkoiNTUV\ngNTUVAYOHOh8fNWqVVy8eJHs7GyOHTtGN50VID6qpMQ6PTUxEaZMgQ0blBjEt7i1ckhOTmbbtm2c\nOnWKVq1a8fLLLzN16lSGDBnCsmXLCA8PZ/Xq1QBEREQwZMgQIiIiaNCgAUuWLNHGO/FJV85ayMzU\nrAXxTZrnIFJHNGtBvFmd3crq6i6lK39Jbe9WEvE3xsDy5fDCC9aozsxMCA62OyqRG1Nlcrh8l9L0\n6dNp2bIlw4YNA2DFihXk5+d7JjoRL/evf8G4cVBcDO+/D3feaXdEInWj2rZSdHQ0hw4dqvYxT1Fb\nSbzBhQvWOUiLF1u3p44fDw00Oku8WJ2PCW3UqBHLly+nrKyMsrIyVqxYQbBqZglgH3wAUVHW0RcH\nDsDEiUoM4n+qrRyys7OZMGECO3fuBKyd0wsWLCDcpvvyVDmIXQoLrQvO6enwxhvw4IN2RyRy/Wr6\n2am7lUSqUV4Ov/kNvPQSjB4NM2ZAo0Z2RyVSM3V+8N63337LsmXLyMrK4sKFC87H33nnndpFKOJD\nDh609iw4HLBli9VOEgkE1V5zGD58OIWFhWzcuJEf/ehH5Obm6pqD+L1z5+D55yEhwaoWduxQYpDA\nUm1bKTY2lgMHDjjvUCotLeWee+5h165dnoqxArWVxN3Wr7cOx7v3XnjtNfj38V8iPq3O20oNGzYE\noEmTJmRmZtK8eXO++uqr2kco4qVyc+HnP7cmsr3zDvTpY3dEIvaptq00duxYioqKmDNnDklJSURE\nRDBlyhRPxCbiEZcuWcdpx8VBbCwcOqTEIKK7lSSg7d5tTWT74Q/hzTehfXu7IxJxjzrfBFdcXMyk\nSZPo0qULXbp0YfLkyZw+ffqGghSxW3ExPPMMPPQQTJ5sbWxTYhD5f9Umh9GjR/ODH/yAP/3pT6xe\nvZrGjRszatQoT8QmUueMgVWrICICysogKwuGDbNuVRWR/1dtWykmJoaDBw9W+5inqK0ktfXpp/Cz\nn0FBgXWk9t132x2RiOfUeVvpe9/7Htu3b3f+e8eOHXz/+9+vXXQiNvjuO5gzB+66C/r2hYwMJQaR\n6lR7K+tbb73FiBEjnNcZbr31VueYTxFvt22btcO5bVsrKfznf9odkYhvuO67lS4nhyZNmvA///M/\nTJw40a2BVUVtJbkep05ZO5w//BAWLoSBA3VdQQJbnbeVLmvSpAlNmjQB4LXXXqt5ZCIeUF5ubWDr\n3Nm6PTUrCx5+WIlBpKZ0Cr34jU8+saayXbgAGzdam9pEpHauu3IQ8Vbnz8OLL0J8PDz2GHz8sRKD\nyI2qsnIIDg7GUUUtfv78ebcFJFITGzZYt6d262Ydr92ypd0RifgHHZ8hPik/3xrPmZFhzXH+8Y/t\njkjEu7ntgrSINygrs0Z0Rkdbx10cPqzEIOIOuiAtPmPfPuuQvO9/Hz76yDoCQ0TcQ5WDeL2zZ60W\n0v33W4flpaUpMYi4m5KDeC1j4L33rERw5ox1q+qoUdqzIOIJaiuJV8rJgfHj4fPPYcUKa2SniHiO\nKgfxKqWlMH8+dO1qHY534IASg4gdVDmI10hPtw7JCw2FXbugTRu7IxIJXEoOYruiIpg6Ff76V2uW\n85Ahuq4gYje1lcQ2xsC771qH5DVsaB2S99hjSgwi3kCVg9jiX/+ybkstKoJ166zjL0TEe6hyEI+6\ncAFmzoSePSExEfbsUWIQ8UaqHMRjPvzQOlI7Ksq6CykszO6IRKQqSg7idl9/Dc89Z43sfOMNePBB\nuyMSkeqorSRuYwysXAmRkXDrrdYheUoMIr5BlYO4xfHjVgvp+HFYuxa6d7c7IhGpCVUOUqfKymDR\nIrjjDmuHc0aGEoOIL1LlIHXm8GF48klrz8KOHdCxo90RiUhtqXKQG/bddzBjBvTubZ2ampamxCDi\n61Q5yA3ZsQPGjrWSwYED1rlIIuL7lBykVk6fhmnTrN3NixbBI4/YHZGI1CW1laTG1q2zbk+9dMka\nwKPEIOJ/VDnIdTt5Ep59Fg4etA7Mi4+3OyIRcRdVDlItY2DZMoiOhvbtreSgxCDi31Q5yDUdOwZP\nPw3nzsEHH1gJQkT8n22VQ3h4ONHR0cTFxdHt38dyFhUVkZCQQPv27enXrx/FxcV2hRfwSkshJQV6\n9ICkJPj4YyUGkUBiW3JwOBykpaWxf/9+du/eDUBKSgoJCQkcPXqUPn36kJKSYld4AW3vXrjzTmu/\nwt69MHEi1K9vd1Qi4km2XnMwxlT49/r16xk5ciQAI0eOZO3atXaEFbBKSuD5563D8Z5/HjZsgPBw\nu6MSETvYWjn07duXrl278vbbbwNQWFhISEgIACEhIRQWFtoVXsDZvNmas1BYCJmZMGyYxnWKBDLb\nLkinp6fTokULvvrqKxISEuh41XkLDocDRxWfTrNmzXJ+Hx8fT7xunam1K2ctvPUW/PjHdkckInUh\nLS2NtLS0Wv+8w1zd27HB7NmzCQ4O5u233yYtLY3mzZtTUFBA7969+ec//1nhtQ6Ho1I7SmrOGFi1\nykoMjz8Or7wCwcF2RyUi7lLTz05b2krnz5/n7NmzAJSUlLBp0yaioqJISkoiNTUVgNTUVAYOHGhH\neH7v+HHrusK8edashddfV2IQkYpsqRyys7N5+OGHAbh06RJPPPEE06ZNo6ioiCFDhnD8+HHCw8NZ\nvXo1t9xyS8WAVTnUWlkZLFkCL78MkybBCy9AUJDdUYmIJ9T0s9Mr2ko1oeRQO5dnLdx0E/zmN9Ch\ng90RiYgn+URbSTznylkLo0fD1q1KDCJSPR2f4ccuz1ro1Mk6D6llS7sjEhFfoeTghzRrQURulNpK\nfubyrIWyMs1aEJHaU+XgJ66ctbB8OfzoR3ZHJCK+TJWDj7t61sKhQ0oMInLjVDn4MM1aEBF3UeXg\ngzRrQUTcTZWDj9m719rM1ry59b2O1BYRd1Dl4CM0a0FEPEnJwQdo1oKIeJraSl5MsxZExC6qHLyQ\nMbBypbWZ7Yc/tA7NU2IQEU9S5eBljh+HceMgN9eatdC9u90RiUggUuXgJcrKrHOQunSBnj0hI0OJ\nQUTso8rBC1yetdCwoXWSqo7UFhG7qXKw0dWzFtLSlBhExDuocrCJZi2IiDdTcvAwzVoQEV+gtpIH\nadaCiPgKVQ4eoFkLIuJrVDm4kWYtiIivUuXgJpq1ICK+TJVDHdOsBRHxB6oc6pBmLYiIv1DlUAdK\nSmDyZBgwQLMWRMQ/KDncoE2brFkLX35pHYOhWQsi4g/UVqolzVoQEX+myqGGjIE//AE6d9asBRHx\nX6ocauCLL6xZCydOWLuddaS2iPgrVQ7XoawMFi60Zi3cc49mLYiI/1PlUI3LsxZuugnS03WktogE\nBlUOVbhwoeKsha1blRhEJHCocnBh+3Zr1kJEhGYtiEhgUnK4wunTMHUqrF+vWQsiEtjUVvq3deus\n21PLyzVrQUQk4CuHggL4+c+t9tGKFTpSW0QEArhyMAaWLoWYGM1aEBG5WkBWDseOwVNPWQfmadaC\niEhlAVU5XDlr4aGHNGtBRKQqAVM5aNaCiMj18/vKQbMWRERqzq+Tg2YtiIjUjl+2lTRrQUTkxvhV\n5aBZCyIidcNvKgfNWhARqTteVzls3LiRjh070q5dO+bPn1/t6zVrQUSk7nlVcigrK2P8+PFs3LiR\nrKwsVq5cyZEjR6p8/eHD0LMnvPeeNWvhxRchKMiDAbtBWlqa3SG4jT+vDbQ+X+fv66spr0oOu3fv\npm3btoSHhxMUFMTjjz/OunXrKr3On2ct+PP/oP68NtD6fJ2/r6+mvOqaQ15eHq1atXL+OywsjF27\ndlV6XWysZi2IiLiTVyUHx3VuQpg7V0dqi4i4lfEiH3/8senfv7/z33PnzjUpKSkVXtOmTRsD6Etf\n+tKXvmrw1aZNmxp9HjuMMQYvcenSJTp06MCHH35Iy5Yt6datGytXrqRTp052hyYiElC8qq3UoEED\n3njjDfr3709ZWRljxoxRYhARsYFXVQ4iIuIdvOpW1mup6eY4bzd69GhCQkKIiopyPlZUVERCQgLt\n27enX79+FBcX2xjhjcnNzaV379507tyZyMhIFi5cCPjPGi9cuED37t2JjY0lIiKCadOmAf6zPrD2\nHcXFxZGYmAj419rCw8OJjo4mLi6Obt26Af61vuLiYgYPHkynTp2IiIhg165dNV6fTySHmm6O8wWj\nRo1i48aNFR5LSUkhISGBo0eP0qdPH1JSUmyK7sYFBQXx+uuv88knn/CPf/yDxYsXc+TIEb9Z4803\n38zWrVs5cOAAhw4dYuvWrezYscNv1gewYMECIiIinHcR+tPaHA4HaWlp7N+/n927dwP+tb4JEybw\nwAMPcOTIEQ4dOkTHjh1rvr4bvsXIA3bu3FnhLqZ58+aZefPm2RhR3cjOzjaRkZHOf3fo0MGcPHnS\nGGNMQUGB6dChg12h1bmHHnrIbN682S/XWFJSYrp27WoOHz7sN+vLzc01ffr0MVu2bDEPPvigMca/\n/v8MDw83p06dqvCYv6yvuLjYtG7dutLjNV2fT1QOrjbH5eXl2RiRexQWFhISEgJASEgIhYWFNkdU\nN3Jycti/fz/du3f3qzWWl5cTGxtLSEiIs4XmL+ubNGkSv/zlL6lX7/8/IvxlbWBVDn379qVr1668\n/fbbgP+sLzs7m6ZNmzJq1CjuuOMOxo4dS0lJSY3X5xPJ4Xo3x/kTh8PhF+s+d+4cgwYNYsGCBTRu\n3LjCc76+xnr16nHgwAFOnDjBRx99xNatWys876vr+8tf/kKzZs2Ii4vDVHG/iq+u7bL09HT279/P\nhg0bWLx4Mdu3b6/wvC+v79KlS+zbt49nnnmGffv20ahRo0otpOtZn08kh9DQUHJzc53/zs3NJSws\nzMaI3CMkJISTJ08CUFBQQLNmzWyO6MaUlpYyaNAghg8fzsCBAwH/WyNAkyZNGDBgABkZGX6xvp07\nd7J+/Xpat25NcnIyW7ZsYfjw4X6xtstatGgBQNOmTXn44YfZvXu336wvLCyMsLAw7rzzTgAGDx7M\nvn37aN68eY3W5xPJoWvXrhw7doycnBwuXrzIH//4R5KSkuwOq84lJSWRmpoKQGpqqvMD1RcZYxgz\nZgwRERFMnDjR+bi/rPHUqVPOuz2+/fZbNm/eTFxcnF+sb+7cueTm5pKdnc2qVau47777ePfdd/1i\nbQDnz5/n7NmzAJSUlLBp0yaioqL8Zn3NmzenVatWHD16FIAPPviAzp07k5iYWLP1ueF6iFv87W9/\nM+3btzdt2rQxc+fOtTucG/b444+bFi1amKCgIBMWFmbeeecd8/XXX5s+ffqYdu3amYSEBPPNN9/Y\nHWatbd++3TgcDhMTE2NiY2NNbGys2bBhg9+s8dChQyYuLs7ExMSYqKgo84tf/MIYY/xmfZelpaWZ\nxMREY4z/rO3zzz83MTExJiYmxnTu3Nn5eeIv6zPGmAMHDpiuXbua6Oho8/DDD5vi4uIar0+b4ERE\npBKfaCuJiIhnKTmIiEglSg4iIlKJkoOIiFSi5CAiIpUoOYiISCVKDmKL+vXrExcX5/z6xS9+cc3X\nz507t85jyMjIYMKECXXyXgMGDODMmTO1/vng4GAA8vPzefTRR6/52vfff/+ax9bX5bokcGmfg9ii\ncePGzl2q7ni9r/H39YnvUeUgXuP06dN07NjRue0/OTmZpUuXMm3aNL799lvi4uIYPnw4AMuXL6d7\n9+7ExcXx05/+lPLycsD6C3z69OnExsbSo0cPvvzySwD+9Kc/ERUVRWxsLPHx8QCkpaVVGGQzcOBA\nYmJi6NGjB5mZmQDMmjWL0aNH07t3b9q0acOiRYtcxh4eHk5RURE5OTl06tSJp556isjISPr378+F\nCxcqvT47O5sePXoQHR3N9OnTnY/n5OQ4B0DdddddZGVlOZ+Lj48nIyOD3/3udzz77LNuWVdJSQkD\nBgwgNjaWqKgoVq9efd3//cTPeGAnt0gl9evXdx6rERsba1avXm2MMWbz5s2mR48eZuXKleb+++93\nvj44ONgVmkKpAAADpklEQVT5fVZWlklMTDSXLl0yxhgzbtw48/vf/94YY4zD4TB/+ctfjDHGTJky\nxcyZM8cYY0xUVJTJz883xhhz+vRpY4wxW7dudc4qGD9+vHn55ZeNMcZs2bLFxMbGGmOMmTlzpunZ\ns6e5ePGiOXXqlLntttucv/dK4eHh5uuvvzbZ2dmmQYMG5uDBg8YYY4YMGWKWL19e6fWJiYnm3Xff\nNcYYs3jxYuf6rpzx8frrr5uZM2caY4zJz893nr//29/+1jz77LN1vq7S0lKzZs0aM3bsWGecl99T\nAo8qB7HF9773Pfbv3+/8utxn79u3L5GRkYwfP56lS5e6/NkPP/yQjIwMunbtSlxcHFu2bCE7OxuA\nhg0bMmDAAAC6dOlCTk4OAD179mTkyJEsXbqUS5cuVXrP9PR0Z1XSu3dvvv76a86ePYvD4WDAgAEE\nBQVx22230axZs2rPwW/dujXR0dGVYrjSzp07SU5OBmDYsGEu3+fRRx9lzZo1AKxevbrCtQjz725w\nXa7ryy+/JDo6ms2bNzN16lR27NjBD37wg2uuVfyXkoN4lfLyco4cOUKjRo0oKiqq8nUjR450JpZ/\n/vOfzJgxA7DGk15Wr1495wfmm2++yZw5c8jNzaVLly4u39tUcfmtYcOGzu/r16/v8kP4SjfddFON\nXl+V0NBQbrvtNjIzM1m9ejWPPfYYUHG+SV2vq127duzfv5+oqCimT5/OK6+8UqvYxfcpOYhXef31\n1+ncuTMrVqxg1KhRzg/WoKAg5/d9+vRhzZo1fPXVV4DVVz9+/Pg13/ezzz6jW7duzJ49m6ZNm3Li\nxIkKz/fq1YsVK1YAVs++adOmNG7cuMoP1hvVs2dPVq1aBeD8va489thjzJ8/nzNnzhAZGQlU/LCv\n63UVFBRw880388QTT/D888+zb9++G1qn+K4GdgcggenyBebL7r//fn7yk5+wbNky9uzZQ6NGjbj3\n3nt59dVXmTlzJk899RTR0dF06dKFd999lzlz5tCvXz/Ky8sJCgpiyZIl/Md//EeFv6qvnHY1ZcoU\njh07hjGGvn37Eh0dzbZt25zPX75AGxMTQ6NGjZzn3l/vRLCrf29Vz122YMEChg4dyvz583nooYeq\n/PnBgwczYcIEZ2Xk7nVlZmbywgsvUK9ePRo2bMibb75Z7drFP+lWVhERqURtJRERqUTJQUREKlFy\nEBGRSpQcRESkEiUHERGpRMlBREQqUXIQEZFKlBxERKSS/wPlCfw1/C4iHwAAAABJRU5ErkJggg==\n",
"text": [
- "<matplotlib.figure.Figure at 0x56428b0>"
+ "<matplotlib.figure.Figure at 0x4f0f390>"
]
},
{
@@ -312,7 +318,7 @@
]
}
],
- "prompt_number": 51
+ "prompt_number": 5
},
{
"cell_type": "heading",
@@ -327,6 +333,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -357,7 +364,7 @@
]
}
],
- "prompt_number": 52
+ "prompt_number": 6
},
{
"cell_type": "heading",
@@ -372,6 +379,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -409,7 +417,7 @@
]
}
],
- "prompt_number": 53
+ "prompt_number": 7
},
{
"cell_type": "heading",
@@ -424,6 +432,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -458,7 +467,7 @@
]
}
],
- "prompt_number": 54
+ "prompt_number": 8
},
{
"cell_type": "heading",
@@ -473,6 +482,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -508,7 +518,7 @@
]
}
],
- "prompt_number": 55
+ "prompt_number": 9
},
{
"cell_type": "heading",
@@ -523,6 +533,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -561,7 +572,7 @@
]
}
],
- "prompt_number": 56
+ "prompt_number": 10
},
{
"cell_type": "heading",
@@ -576,6 +587,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -636,7 +648,7 @@
]
}
],
- "prompt_number": 57
+ "prompt_number": 11
},
{
"cell_type": "heading",
@@ -651,6 +663,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -738,7 +751,7 @@
]
}
],
- "prompt_number": 58
+ "prompt_number": 12
},
{
"cell_type": "heading",
@@ -753,6 +766,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
" \n",
@@ -816,7 +830,7 @@
]
}
],
- "prompt_number": 59
+ "prompt_number": 13
},
{
"cell_type": "heading",
@@ -831,6 +845,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -896,7 +911,7 @@
]
}
],
- "prompt_number": 60
+ "prompt_number": 14
},
{
"cell_type": "heading",
@@ -911,6 +926,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -974,7 +990,7 @@
]
}
],
- "prompt_number": 61
+ "prompt_number": 15
},
{
"cell_type": "heading",
@@ -989,6 +1005,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -1043,7 +1060,7 @@
]
}
],
- "prompt_number": 62
+ "prompt_number": 16
},
{
"cell_type": "heading",
@@ -1058,6 +1075,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -1111,7 +1129,7 @@
]
}
],
- "prompt_number": 63
+ "prompt_number": 17
},
{
"cell_type": "heading",
@@ -1126,6 +1144,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -1175,7 +1194,7 @@
]
}
],
- "prompt_number": 64
+ "prompt_number": 18
},
{
"cell_type": "heading",
@@ -1190,6 +1209,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -1258,7 +1278,7 @@
]
}
],
- "prompt_number": 65
+ "prompt_number": 19
},
{
"cell_type": "heading",
@@ -1273,6 +1293,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -1321,7 +1342,7 @@
]
}
],
- "prompt_number": 66
+ "prompt_number": 20
},
{
"cell_type": "heading",
@@ -1336,6 +1357,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -1388,7 +1410,7 @@
]
}
],
- "prompt_number": 67
+ "prompt_number": 21
},
{
"cell_type": "heading",
@@ -1403,6 +1425,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -1442,7 +1465,7 @@
]
}
],
- "prompt_number": 68
+ "prompt_number": 22
},
{
"cell_type": "heading",
@@ -1457,6 +1480,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -1505,7 +1529,7 @@
]
}
],
- "prompt_number": 69
+ "prompt_number": 23
},
{
"cell_type": "heading",
@@ -1520,6 +1544,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -1568,7 +1593,7 @@
]
}
],
- "prompt_number": 70
+ "prompt_number": 24
},
{
"cell_type": "heading",
@@ -1583,6 +1608,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -1619,7 +1645,7 @@
]
}
],
- "prompt_number": 71
+ "prompt_number": 25
},
{
"cell_type": "heading",
@@ -1634,6 +1660,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -1695,7 +1722,7 @@
]
}
],
- "prompt_number": 72
+ "prompt_number": 26
},
{
"cell_type": "heading",
@@ -1710,6 +1737,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -1766,7 +1794,7 @@
]
}
],
- "prompt_number": 73
+ "prompt_number": 27
},
{
"cell_type": "heading",
@@ -1781,6 +1809,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -1864,7 +1893,7 @@
]
}
],
- "prompt_number": 74
+ "prompt_number": 28
},
{
"cell_type": "heading",
@@ -1879,6 +1908,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -1926,7 +1956,7 @@
]
}
],
- "prompt_number": 75
+ "prompt_number": 29
},
{
"cell_type": "heading",
@@ -1941,6 +1971,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -1989,7 +2020,7 @@
]
}
],
- "prompt_number": 76
+ "prompt_number": 30
},
{
"cell_type": "heading",
@@ -2004,6 +2035,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -2053,7 +2085,7 @@
]
}
],
- "prompt_number": 77
+ "prompt_number": 31
},
{
"cell_type": "heading",
@@ -2068,6 +2100,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -2114,7 +2147,7 @@
]
}
],
- "prompt_number": 78
+ "prompt_number": 32
},
{
"cell_type": "heading",
@@ -2129,6 +2162,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -2161,7 +2195,7 @@
]
}
],
- "prompt_number": 79
+ "prompt_number": 33
},
{
"cell_type": "heading",
@@ -2176,6 +2210,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -2207,7 +2242,7 @@
]
}
],
- "prompt_number": 80
+ "prompt_number": 34
},
{
"cell_type": "heading",
@@ -2222,6 +2257,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -2320,7 +2356,7 @@
]
}
],
- "prompt_number": 81
+ "prompt_number": 35
},
{
"cell_type": "heading",
@@ -2335,6 +2371,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -2376,7 +2413,7 @@
]
}
],
- "prompt_number": 82
+ "prompt_number": 36
},
{
"cell_type": "heading",
@@ -2391,6 +2428,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -2467,7 +2505,7 @@
]
}
],
- "prompt_number": 83
+ "prompt_number": 37
},
{
"cell_type": "heading",
@@ -2482,6 +2520,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables \n",
"\n",
@@ -2526,7 +2565,7 @@
]
}
],
- "prompt_number": 84
+ "prompt_number": 38
},
{
"cell_type": "heading",
@@ -2541,6 +2580,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -2594,7 +2634,7 @@
]
}
],
- "prompt_number": 85
+ "prompt_number": 39
},
{
"cell_type": "heading",
@@ -2609,6 +2649,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"#Initilization of Variables\n",
"\n",
@@ -2654,7 +2695,7 @@
]
}
],
- "prompt_number": 86
+ "prompt_number": 41
},
{
"cell_type": "heading",
@@ -2669,6 +2710,7 @@
"collapsed": false,
"input": [
"import math\n",
+ "import numpy as np\n",
"\n",
"dell=0.25 #mm #Instantaneous Extension\n",
"\n",
@@ -2742,7 +2784,7 @@
]
}
],
- "prompt_number": 87
+ "prompt_number": 42
}
],
"metadata": {}