summaryrefslogtreecommitdiff
path: root/Solid_state_physics_by_P._K._Palanisamy/Chapter_3.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Solid_state_physics_by_P._K._Palanisamy/Chapter_3.ipynb')
-rwxr-xr-xSolid_state_physics_by_P._K._Palanisamy/Chapter_3.ipynb459
1 files changed, 459 insertions, 0 deletions
diff --git a/Solid_state_physics_by_P._K._Palanisamy/Chapter_3.ipynb b/Solid_state_physics_by_P._K._Palanisamy/Chapter_3.ipynb
new file mode 100755
index 00000000..c7c45c55
--- /dev/null
+++ b/Solid_state_physics_by_P._K._Palanisamy/Chapter_3.ipynb
@@ -0,0 +1,459 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:201c0242c8a2063b9a355e5a7deec7582a5a21b0e1187464be6b9fa32a384889"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 3:Crystal planes and X-ray diffraction"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.2, Page number 3.5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "from sympy import *\n",
+ "\n",
+ "#Variable declaration\n",
+ "'''In a simple cubic structure, there are three types of atomic arrangement\n",
+ "(i)(100)\n",
+ "(ii)(110)\n",
+ "(iii)(111)'''\n",
+ "\n",
+ "#Calculations and results\n",
+ "\n",
+ "#Consider (100) plane\n",
+ "n = (1./4.)*4 #no. of atoms in this plane\n",
+ "#Let a be the lattice constant in mm\n",
+ "a = Symbol('a')\n",
+ "A1 = a**2\n",
+ "nm = n/A1 #no. of atoms per mm^2\n",
+ "print \"The number of atoms per square millimeter for (100) plane is\",nm\n",
+ "\n",
+ "#Consider (110) plane\n",
+ "n2 = 1 \n",
+ "A2 = math.sqrt(2)*a**2\n",
+ "nm2 = n2/A2\n",
+ "print \"The number of atoms per square millimeter for (110) plane is\",nm2\n",
+ "\n",
+ "#Consider (111) plane\n",
+ "n3 = (1./360.)*60*3\n",
+ "EO = a*math.sqrt(2)*math.cos(math.pi/6)\n",
+ "A3 = (a*math.sqrt(2)*EO)/2\n",
+ "nm3 = n3/A3\n",
+ "print \"The number of atoms per square millimeter for (111) plane is\",nm3"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The number of atoms per square millimeter for (100) plane is 1.0/a**2\n",
+ "The number of atoms per square millimeter for (110) plane is 0.707106781186547/a**2\n",
+ "The number of atoms per square millimeter for (111) plane is 0.577350269189626/a**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.3, Page number 3.6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declartion\n",
+ "r = 0.1278*10**-9 #atomic radius(m)\n",
+ "\n",
+ "#Calculations\n",
+ "#For FCC structure,\n",
+ "a = (4*r)/sqrt(2)\n",
+ "\n",
+ "#For (110) plane,\n",
+ "h1 = 1\n",
+ "k1 = 1\n",
+ "l1 = 0\n",
+ "d1 = a/((h1**2+k1**2+l1**2)**0.5) \n",
+ "\n",
+ "#For (212) plane,\n",
+ "h2 = 2\n",
+ "k2 = 1\n",
+ "l2 = 2\n",
+ "d2 = a/((h2**2+k2**2+l2**2)**0.5)\n",
+ "\n",
+ "#Results\n",
+ "print \"Interplanar spacing for (110) plane =\",d1/1E-9,\"nm\"\n",
+ "print \"Interplanar spacing for (212) plane =\",round((d2/1E-9),4),\"nm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Interplanar spacing for (110) plane = 0.2556 nm\n",
+ "Interplanar spacing for (212) plane = 0.1205 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.4, Page number 3.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "from sympy import *\n",
+ "\n",
+ "#Variable declaration\n",
+ "#Let a be the lattice constant\n",
+ "#For calculations, let us assume a = 1\n",
+ "a = 1\n",
+ "\n",
+ "#Calculations\n",
+ "\n",
+ "#For (100) plane,\n",
+ "h1 = 1\n",
+ "k1 = 0\n",
+ "l1 = 0\n",
+ "d1 = 1/((h1**2+k1**2+l1**2)**0.5) \n",
+ "\n",
+ "#For (110) plane,\n",
+ "h2 = 1\n",
+ "k2 = 1\n",
+ "l2 = 0\n",
+ "d2 = 1/((h2**2+k2**2+l2**2)**0.5)\n",
+ "\n",
+ "#For (111) plane,\n",
+ "h3 = 1\n",
+ "k3 = 1\n",
+ "l3 = 1\n",
+ "d3 = 1/((h3**2+k3**2+l3**2)**0.5)\n",
+ "\n",
+ "#Result\n",
+ "print \"d100:d110:d111 =\",d1,\":\",d2,\":\",d3"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "d100:d110:d111 = 1.0 : 0.707106781187 : 0.57735026919\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.5, Page number 3.7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "#Coefficients of intercepts along three axes\n",
+ "m = 1.\n",
+ "n = 1./2.\n",
+ "p = 3.\n",
+ "\n",
+ "#Calculations\n",
+ "m_inv = 1/m \n",
+ "n_inv = 1/n\n",
+ "p_inv = 1/p\n",
+ "\n",
+ "def gcd(a, b):\n",
+ " while b: \n",
+ " a, b = b, a % b\n",
+ " return a\n",
+ "\n",
+ "def lcm(a, b):\n",
+ " return (a * b)/ gcd(a, b)\n",
+ "\n",
+ "def lcmm(*args): \n",
+ " return reduce(lcm, args)\n",
+ "\n",
+ "mul_fact = lcmm(1,1,3)\n",
+ "m1 = m_inv*mul_fact #Clear the first fraction\n",
+ "m2 = n_inv*mul_fact #Clear the second fraction\n",
+ "m3 = p_inv*mul_fact #Clear the third fraction\n",
+ "print \"The required miller indices are\", m1,m2,m3\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The required miller indices are 3.0 6.0 1.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.6, Page number 3.14"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "d = 0.282*10**-9 #lattice spacing(m)\n",
+ "n = 1 #first order\n",
+ "theta = 8.35 #glancing angle(degrees)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda = (2*d*math.sin(math.radians(theta)))/n\n",
+ "\n",
+ "#For maximum value possible,\n",
+ "theta = 90\n",
+ "n = (2*d)/lamda\n",
+ "\n",
+ "#Results\n",
+ "print \"Wavelength of X-rays =\",round((lamda/1E-9),4),\"nm\"\n",
+ "print \"Maximum order of diffraction possible =\",round(n,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Wavelength of X-rays = 0.0819 nm\n",
+ "Maximum order of diffraction possible = 6.89\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.8, Page number 3.15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda = 1.5418*10**-10 #wavelength(m)\n",
+ "theta = 30 #angle(degrees)\n",
+ "n = 1 #first order\n",
+ "#For (111) plane\n",
+ "h = 1\n",
+ "k = 1\n",
+ "l = 1\n",
+ "\n",
+ "#Calculations\n",
+ "d = (n*lamda)/(2*math.sin(math.radians(theta)))\n",
+ "a = d*((h**2+k**2+l**2)**0.5)\n",
+ "\n",
+ "#Result\n",
+ "print \"Interatomic spacing =\",round((a/1E-10),3),\"A\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Interatomic spacing = 2.67 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.9, Page number 3.15"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "from math import sqrt, pi \n",
+ "\n",
+ "#Variable declaration\n",
+ "d = 0.28 #lattice spacing\n",
+ "lamda = 0.074*10**-9 #Wavelength(m)\n",
+ "n = 2 #2nd order\n",
+ "\n",
+ "#Calculations\n",
+ "d110 = d/sqrt(2)\n",
+ "theta = math.asin((n*lamda)/(2*d110))*180/pi\n",
+ "\n",
+ "#Result\n",
+ "print \"Glancing angle =\",round(theta/1E-9),\"degrees\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Glancing angle = 21.0 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.10, Page number 3.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "a = 0.38*10**-9 #lattice constant\n",
+ "h = 1\n",
+ "k = 1\n",
+ "l = 0\n",
+ "\n",
+ "#Calculations\n",
+ "d = a/math.sqrt(h**2+k**2+l**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"Distance =\",round((d/1E-9),2),\"nm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Distance = 0.27 nm\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.11, Page number 3.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "from sympy import *\n",
+ "\n",
+ "#Variable declaration\n",
+ "a = Symbol('a')\n",
+ "\n",
+ "#Calculations\n",
+ "#For (110) plane\n",
+ "a1 = math.sqrt(2)*a**2 #area of plane\n",
+ "n1 = (1./4 )*4 #no. of atoms in this plane\n",
+ "rho1 = n1/a1\n",
+ "\n",
+ "#For (111) plane\n",
+ "EO = (a*math.sqrt(3))/math.sqrt(2)\n",
+ "a2 = (a*EO)/math.sqrt(2)\n",
+ "n2 = 3*(1./6.)\n",
+ "rho2 = n2/a2\n",
+ "\n",
+ "#Result\n",
+ "print \"Density of lattice points (111) plane:density of lattice points (110) plane =\",rho2,\":\",rho1"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Density of lattice points (111) plane:density of lattice points (110) plane = 0.577350269189626/a**2 : 0.707106781186547/a**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file