summaryrefslogtreecommitdiff
path: root/Solid_state_physics_by_P._K._Palanisamy/Chapter_2.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Solid_state_physics_by_P._K._Palanisamy/Chapter_2.ipynb')
-rwxr-xr-xSolid_state_physics_by_P._K._Palanisamy/Chapter_2.ipynb331
1 files changed, 331 insertions, 0 deletions
diff --git a/Solid_state_physics_by_P._K._Palanisamy/Chapter_2.ipynb b/Solid_state_physics_by_P._K._Palanisamy/Chapter_2.ipynb
new file mode 100755
index 00000000..99284878
--- /dev/null
+++ b/Solid_state_physics_by_P._K._Palanisamy/Chapter_2.ipynb
@@ -0,0 +1,331 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:64e1fbee0e1d9b8157cae12a98a7773b847a3c5e842a9d3f124a5485fe931875"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 2: Crystal Structure"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.1, Page number 2.16"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "from math import sqrt \n",
+ "\n",
+ "#Variable declaration\n",
+ "#Assuming r=1 for simpliciy in calculations\n",
+ "r = 1\n",
+ "\n",
+ "#Calculations\n",
+ "a = (4*r)/sqrt(3)\n",
+ "#Let R be the radius of interstitial sphere that can fit into the void,therefore,\n",
+ "R = (a-2*r)/2 \n",
+ "\n",
+ "#Result\n",
+ "print \"The maximum radius of interstitial sphere is\",round(R,3),\"r\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum radius of interstitial sphere is 0.155 r\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.2, Page number 2.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "r1 = 1.258*10**-10 #atomic radius(m)\n",
+ "r2 = 1.292*10**-10 #atomic radius(m)\n",
+ "\n",
+ "#Calculations\n",
+ "#In BCC\n",
+ "a_bcc = (4*r1)/sqrt(3)\n",
+ "v_bcc = a_bcc**3 #volume of unit cell(m^3)\n",
+ "n1 = ((1./8.)*8.)+1\n",
+ "V1 = v_bcc/n1 #volume occupied by 1 atom(m^3)\n",
+ "\n",
+ "#In FCC\n",
+ "a_fcc = 2*sqrt(2)*r2\n",
+ "v_fcc = a_fcc**3 #volume of unit cell(m^3)\n",
+ "n2 = ((1./2.)*6.)+((1./8.)*8.)\n",
+ "V2 = v_fcc/n2 #volume occupied by 1 atom(m^3)\n",
+ "\n",
+ "del_v = ((V1-V2)/V1)*100 #change in volume\n",
+ "\n",
+ "#Result\n",
+ "print \"During the conversion of iron from BCC to FCC, the decrease in volume is\",round(del_v,1),\"%\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "During the conversion of iron from BCC to FCC, the decrease in volume is 0.5 %\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.3, Page number 2.17"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "a = 0.27*10**-9 #nearest neighbour distance(m)\n",
+ "c = 0.494*10**-9 #height of unit cell(m)\n",
+ "M = 65.37 #atomic weight of zinc\n",
+ "N = 6.023*10**26 #Avogadro's number(k/mol)\n",
+ "\n",
+ "#Calculations\n",
+ "V = (3*sqrt(3)*a**2*c)/2 #volume of unit cell\n",
+ "rho = (6*M)/(N*V) #density of crystal\n",
+ "\n",
+ "#Results\n",
+ "print \"Volume of unit cell =\",round((V/1E-29),2),\"*10^29 m^3\"\n",
+ "print \"Density of zinc =\",round(rho),\"kg/m^3\"\n",
+ "print \"\\nThe solution differs because of rounding-off of the digits in the textbook\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Volume of unit cell = 9.36 *10^29 m^3\n",
+ "Density of zinc = 6960.0 kg/m^3\n",
+ "\n",
+ "The solution differs because of rounding-off of the digits in the textbook\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.4, Page number 2.18"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "from math import sqrt\n",
+ "\n",
+ "#Varaible declaration\n",
+ "#Let r be the radius of atom and R be the radius of sphere\n",
+ "#For simplicity in calculations, let us assume r =1\n",
+ "r = 1\n",
+ "\n",
+ "#Calculations\n",
+ "#For FCC structure\n",
+ "a = (4*r)/sqrt(2)\n",
+ "R = (a/2)-r\n",
+ "\n",
+ "print \"Maximum radius of sphere =\",round(R,3),\"r\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum radius of sphere = 0.414 r\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.5, Page number 2.19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "a = 0.356*10**-9 #cube edge(m)\n",
+ "M = 12.01 #atomic weight of carbon\n",
+ "N = 6.023*10**26 #Avogadro's number(k/mol)\n",
+ "na = 1.77*10**29 #no. of atoms per meter cube\n",
+ "\n",
+ "#Calculations\n",
+ "#Diamond has 2 interpenetrating FCC lattices. Since each FCC unit cell has 4 atoms, the total no. of atoms per unit cell is 8\n",
+ "n = 8/a**3\n",
+ "m = M/N\n",
+ "rho = m*na\n",
+ "\n",
+ "#Result\n",
+ "print \"Number of atoms =\",round((n/1E+29),3),\"*10^29\"\n",
+ "print \"The density of diamond is\",round(rho,1),\"kg/m^3(Calculation mistake in the textbook)\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Number of atoms = 1.773 *10^29\n",
+ "The density of diamond is 3529.4 kg/m^3(Calculation mistake in the textbook)\n"
+ ]
+ }
+ ],
+ "prompt_number": 58
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.6, Page number 2.19"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable declaration\n",
+ "rho = 2.18 #density of NaCl(gm/cm^3)\n",
+ "N = 6.023*10**23 #Avogadro's number(/mol)\n",
+ "\n",
+ "#Caculations\n",
+ "w = 23+35.5 #molecular weight of NaCl\n",
+ "m = w/N #mass of NaCl molecule\n",
+ "nm = rho/m #no. of molecules per unit volume(molecule/cm^3)\n",
+ "#Since NaCl is diatomic\n",
+ "n = 2*nm\n",
+ "#Let a be the distance between adjacent atoms in NaCl and\n",
+ "# n be the no. of atoms along the edge of the cube\n",
+ "#length of an edge = na\n",
+ "#volume of unit cube = n^3*a^3\n",
+ "a = (1/n)**(1./3.)\n",
+ "\n",
+ "#Result\n",
+ "print \"The distance between two adjacent atoms is\",round((a/1E-8),2),\"A\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The distance between two adjacent atoms is 2.81 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2.7, Page number 2.20"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "w = 63.5 #atomic weight of copper\n",
+ "r = 1.278*10**-8 #atomic rdius(m)\n",
+ "N = 6.023*10**23 #Avogadro's number(/mol)\n",
+ "\n",
+ "#Calculations\n",
+ "m = w/N #mass of each copper atom(gm)\n",
+ "#Since copper has FCC structure lattice constant\n",
+ "a = (4*r)/sqrt(2) \n",
+ "n = 4 #no. of atoms in unit cell of FCC structure\n",
+ "M = n*m #mass of unit cell\n",
+ "rho = M/a**3 #density\n",
+ "\n",
+ "#Result\n",
+ "print \"Density of copper =\",round(rho,2),\"gm/cm^3\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Density of copper = 8.93 gm/cm^3\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file