summaryrefslogtreecommitdiff
path: root/Solid_State_Physics_by_Dr._M._Arumugam/Chapter12_0fvtKtc.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Solid_State_Physics_by_Dr._M._Arumugam/Chapter12_0fvtKtc.ipynb')
-rw-r--r--Solid_State_Physics_by_Dr._M._Arumugam/Chapter12_0fvtKtc.ipynb160
1 files changed, 160 insertions, 0 deletions
diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter12_0fvtKtc.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter12_0fvtKtc.ipynb
new file mode 100644
index 00000000..af17168c
--- /dev/null
+++ b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter12_0fvtKtc.ipynb
@@ -0,0 +1,160 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 12: Lasers"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 12.30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "relative population in laser transition levels is 1.081 *10**30\n",
+ "answer given in the book is wrong\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant(J s)\n",
+ "c=3*10**8; #velocity of light(m/s)\n",
+ "lamda=6943*10**-10; #wavelength of emission(m)\n",
+ "k=1.38*10**-23; #boltzmann constant\n",
+ "T=300; #temperature(K)\n",
+ "\n",
+ "#Calculation\n",
+ "new=c/lamda; #frequency(Hz)\n",
+ "x=h*new/(k*T);\n",
+ "N1byN2=math.exp(x); #relative population in laser transition levels\n",
+ "\n",
+ "#Result\n",
+ "print \"relative population in laser transition levels is\",round(N1byN2/10**30,3),\"*10**30\"\n",
+ "print \"answer given in the book is wrong\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 12.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of photons emitted is 7.323 *10**15 photons/second\n",
+ "power density is 2.3 kW/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant(J s)\n",
+ "P=2.3*10**-3; #output power(W)\n",
+ "t=1; #time(sec)\n",
+ "new=4.74*10**14; #frequency(Hz)\n",
+ "s=1*10**-6; #spot area(m**2)\n",
+ "\n",
+ "#Calculation\n",
+ "n=P*t/(h*new); #number of photons emitted in each second \n",
+ "Pd=P/s; #power density(W/m**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"number of photons emitted is\",round(n/10**15,3),\"*10**15 photons/second\"\n",
+ "print \"power density is\",Pd/10**3,\"kW/m**2\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 12.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of emission is 8628 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant(J s)\n",
+ "c=3*10**8; #velocity of light(m/s)\n",
+ "Eg=1.44*1.6*10**-19; #band gap(J)\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=h*c/Eg; #wavelength of emission(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of emission is\",int(round(lamda*10**10)),\"angstrom\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}