diff options
Diffstat (limited to 'Solid_State_Physics_by_Dr._M._Arumugam/Chapter12.ipynb')
-rw-r--r-- | Solid_State_Physics_by_Dr._M._Arumugam/Chapter12.ipynb | 160 |
1 files changed, 160 insertions, 0 deletions
diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter12.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter12.ipynb new file mode 100644 index 00000000..af17168c --- /dev/null +++ b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter12.ipynb @@ -0,0 +1,160 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 12: Lasers" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 1, Page number 12.30" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "relative population in laser transition levels is 1.081 *10**30\n", + "answer given in the book is wrong\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "h=6.626*10**-34; #plancks constant(J s)\n", + "c=3*10**8; #velocity of light(m/s)\n", + "lamda=6943*10**-10; #wavelength of emission(m)\n", + "k=1.38*10**-23; #boltzmann constant\n", + "T=300; #temperature(K)\n", + "\n", + "#Calculation\n", + "new=c/lamda; #frequency(Hz)\n", + "x=h*new/(k*T);\n", + "N1byN2=math.exp(x); #relative population in laser transition levels\n", + "\n", + "#Result\n", + "print \"relative population in laser transition levels is\",round(N1byN2/10**30,3),\"*10**30\"\n", + "print \"answer given in the book is wrong\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 2, Page number 12.31" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "number of photons emitted is 7.323 *10**15 photons/second\n", + "power density is 2.3 kW/m**2\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "h=6.626*10**-34; #plancks constant(J s)\n", + "P=2.3*10**-3; #output power(W)\n", + "t=1; #time(sec)\n", + "new=4.74*10**14; #frequency(Hz)\n", + "s=1*10**-6; #spot area(m**2)\n", + "\n", + "#Calculation\n", + "n=P*t/(h*new); #number of photons emitted in each second \n", + "Pd=P/s; #power density(W/m**2)\n", + "\n", + "#Result\n", + "print \"number of photons emitted is\",round(n/10**15,3),\"*10**15 photons/second\"\n", + "print \"power density is\",Pd/10**3,\"kW/m**2\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 3, Page number 12.31" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "wavelength of emission is 8628 angstrom\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "h=6.626*10**-34; #plancks constant(J s)\n", + "c=3*10**8; #velocity of light(m/s)\n", + "Eg=1.44*1.6*10**-19; #band gap(J)\n", + "\n", + "#Calculation\n", + "lamda=h*c/Eg; #wavelength of emission(m)\n", + "\n", + "#Result\n", + "print \"wavelength of emission is\",int(round(lamda*10**10)),\"angstrom\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |