diff options
Diffstat (limited to 'Solid_State_Physics_by_Dr._M._Arumugam/Chapter11_KQJlWAT.ipynb')
-rw-r--r-- | Solid_State_Physics_by_Dr._M._Arumugam/Chapter11_KQJlWAT.ipynb | 327 |
1 files changed, 327 insertions, 0 deletions
diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter11_KQJlWAT.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter11_KQJlWAT.ipynb new file mode 100644 index 00000000..617a2a18 --- /dev/null +++ b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter11_KQJlWAT.ipynb @@ -0,0 +1,327 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# 11: Magnetic Properties" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 1, Page number 11.31" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "temperature rise is 8.43 K\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "El=10**-2*50; #energy loss(J)\n", + "H=El*60; #heat produced(J)\n", + "d=7.7*10**3; #iron rod(kg/m**3)\n", + "s=0.462*10**-3; #specific heat(J/kg K)\n", + "\n", + "#Calculation\n", + "theta=H/(d*s); #temperature rise(K)\n", + "\n", + "#Result\n", + "print \"temperature rise is\",round(theta,2),\"K\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 2, Page number 11.31" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "magnetic field at the centre is 14 weber/m**2\n", + "dipole moment is 9 *10**-24 ampere/m**2\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "e=1.6*10**-19; #charge(coulomb)\n", + "new=6.8*10**15; #frequency(revolutions per second)\n", + "mew0=4*math.pi*10**-7;\n", + "R=5.1*10**-11; #radius(m)\n", + "\n", + "#Calculation\n", + "i=round(e*new,4); #current(ampere)\n", + "B=mew0*i/(2*R); #magnetic field at the centre(weber/m**2)\n", + "A=math.pi*R**2;\n", + "d=i*A; #dipole moment(ampere/m**2)\n", + "\n", + "#Result\n", + "print \"magnetic field at the centre is\",int(round(B)),\"weber/m**2\"\n", + "print \"dipole moment is\",int(round(d*10**24)),\"*10**-24 ampere/m**2\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 3, Page number 11.31" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "intensity of magnetisation is 5 ampere/m\n", + "flux density in material is 1.257 weber/m**2\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "chi=0.5*10**-5; #magnetic susceptibility\n", + "H=10**6; #field strength(ampere/m)\n", + "mew0=4*math.pi*10**-7;\n", + "\n", + "#Calculation\n", + "I=chi*H; #intensity of magnetisation(ampere/m)\n", + "B=mew0*(I+H); #flux density in material(weber/m**2)\n", + "\n", + "#Result\n", + "print \"intensity of magnetisation is\",int(I),\"ampere/m\"\n", + "print \"flux density in material is\",round(B,3),\"weber/m**2\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 4, Page number 11.31" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "number of Bohr magnetons is 2.22 bohr magneon/atom\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "B=9.27*10**-24; #bohr magneton(ampere m**2)\n", + "a=2.86*10**-10; #edge(m)\n", + "Is=1.76*10**6; #saturation value of magnetisation(ampere/m)\n", + "\n", + "#Calculation\n", + "N=2/a**3;\n", + "mew_bar=Is/N; #number of Bohr magnetons(ampere m**2)\n", + "mew_bar=mew_bar/B; #number of Bohr magnetons(bohr magneon/atom)\n", + "\n", + "#Result\n", + "print \"number of Bohr magnetons is\",round(mew_bar,2),\"bohr magneon/atom\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 5, Page number 11.32" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "average magnetic moment is 2.79 *10**-3 bohr magneton/spin\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "mew0=4*math.pi*10**-7;\n", + "H=9.27*10**-24; #bohr magneton(ampere m**2)\n", + "beta=10**6; #field(ampere/m)\n", + "k=1.38*10**-23; #boltzmann constant\n", + "T=303; #temperature(K)\n", + "\n", + "#Calculation\n", + "mm=mew0*H*beta/(k*T); #average magnetic moment(bohr magneton/spin)\n", + "\n", + "#Result\n", + "print \"average magnetic moment is\",round(mm*10**3,2),\"*10**-3 bohr magneton/spin\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 6, Page number 11.32" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "hysteresis loss per cycle is 188 J/m**3\n", + "hysteresis loss per second is 9400 watt/m**3\n", + "power loss is 1.23 watt/kg\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "A=94; #area(m**2)\n", + "vy=0.1; #value of length(weber/m**2)\n", + "vx=20; #value of unit length\n", + "n=50; #number of magnetization cycles\n", + "d=7650; #density(kg/m**3)\n", + "\n", + "#Calculation\n", + "h=A*vy*vx; #hysteresis loss per cycle(J/m**3)\n", + "hs=h*n; #hysteresis loss per second(watt/m**3)\n", + "pl=hs/d; #power loss(watt/kg)\n", + "\n", + "#Result\n", + "print \"hysteresis loss per cycle is\",int(h),\"J/m**3\"\n", + "print \"hysteresis loss per second is\",int(hs),\"watt/m**3\"\n", + "print \"power loss is\",round(pl,2),\"watt/kg\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Example number 8, Page number 11.33" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "critical field is 33.64 *10**3 ampere/m\n" + ] + } + ], + "source": [ + "#importing modules\n", + "import math\n", + "from __future__ import division\n", + "\n", + "#Variable declaration\n", + "H0=64*10**3; #initial field(ampere/m)\n", + "T=5; #temperature(K)\n", + "Tc=7.26; #critical temperature(K)\n", + "\n", + "#Calculation\n", + "H=H0*(1-(T/Tc)**2); #critical field(ampere/m)\n", + "\n", + "#Result\n", + "print \"critical field is\",round(H/10**3,2),\"*10**3 ampere/m\"" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |