summaryrefslogtreecommitdiff
path: root/Solid_State_Physics_by_Dr._M._Arumugam/Chapter11_KQJlWAT.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Solid_State_Physics_by_Dr._M._Arumugam/Chapter11_KQJlWAT.ipynb')
-rw-r--r--Solid_State_Physics_by_Dr._M._Arumugam/Chapter11_KQJlWAT.ipynb327
1 files changed, 327 insertions, 0 deletions
diff --git a/Solid_State_Physics_by_Dr._M._Arumugam/Chapter11_KQJlWAT.ipynb b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter11_KQJlWAT.ipynb
new file mode 100644
index 00000000..617a2a18
--- /dev/null
+++ b/Solid_State_Physics_by_Dr._M._Arumugam/Chapter11_KQJlWAT.ipynb
@@ -0,0 +1,327 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# 11: Magnetic Properties"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 1, Page number 11.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "temperature rise is 8.43 K\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "El=10**-2*50; #energy loss(J)\n",
+ "H=El*60; #heat produced(J)\n",
+ "d=7.7*10**3; #iron rod(kg/m**3)\n",
+ "s=0.462*10**-3; #specific heat(J/kg K)\n",
+ "\n",
+ "#Calculation\n",
+ "theta=H/(d*s); #temperature rise(K)\n",
+ "\n",
+ "#Result\n",
+ "print \"temperature rise is\",round(theta,2),\"K\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 2, Page number 11.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "magnetic field at the centre is 14 weber/m**2\n",
+ "dipole moment is 9 *10**-24 ampere/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "e=1.6*10**-19; #charge(coulomb)\n",
+ "new=6.8*10**15; #frequency(revolutions per second)\n",
+ "mew0=4*math.pi*10**-7;\n",
+ "R=5.1*10**-11; #radius(m)\n",
+ "\n",
+ "#Calculation\n",
+ "i=round(e*new,4); #current(ampere)\n",
+ "B=mew0*i/(2*R); #magnetic field at the centre(weber/m**2)\n",
+ "A=math.pi*R**2;\n",
+ "d=i*A; #dipole moment(ampere/m**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"magnetic field at the centre is\",int(round(B)),\"weber/m**2\"\n",
+ "print \"dipole moment is\",int(round(d*10**24)),\"*10**-24 ampere/m**2\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 3, Page number 11.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "intensity of magnetisation is 5 ampere/m\n",
+ "flux density in material is 1.257 weber/m**2\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "chi=0.5*10**-5; #magnetic susceptibility\n",
+ "H=10**6; #field strength(ampere/m)\n",
+ "mew0=4*math.pi*10**-7;\n",
+ "\n",
+ "#Calculation\n",
+ "I=chi*H; #intensity of magnetisation(ampere/m)\n",
+ "B=mew0*(I+H); #flux density in material(weber/m**2)\n",
+ "\n",
+ "#Result\n",
+ "print \"intensity of magnetisation is\",int(I),\"ampere/m\"\n",
+ "print \"flux density in material is\",round(B,3),\"weber/m**2\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 4, Page number 11.31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of Bohr magnetons is 2.22 bohr magneon/atom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "B=9.27*10**-24; #bohr magneton(ampere m**2)\n",
+ "a=2.86*10**-10; #edge(m)\n",
+ "Is=1.76*10**6; #saturation value of magnetisation(ampere/m)\n",
+ "\n",
+ "#Calculation\n",
+ "N=2/a**3;\n",
+ "mew_bar=Is/N; #number of Bohr magnetons(ampere m**2)\n",
+ "mew_bar=mew_bar/B; #number of Bohr magnetons(bohr magneon/atom)\n",
+ "\n",
+ "#Result\n",
+ "print \"number of Bohr magnetons is\",round(mew_bar,2),\"bohr magneon/atom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 5, Page number 11.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "average magnetic moment is 2.79 *10**-3 bohr magneton/spin\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "mew0=4*math.pi*10**-7;\n",
+ "H=9.27*10**-24; #bohr magneton(ampere m**2)\n",
+ "beta=10**6; #field(ampere/m)\n",
+ "k=1.38*10**-23; #boltzmann constant\n",
+ "T=303; #temperature(K)\n",
+ "\n",
+ "#Calculation\n",
+ "mm=mew0*H*beta/(k*T); #average magnetic moment(bohr magneton/spin)\n",
+ "\n",
+ "#Result\n",
+ "print \"average magnetic moment is\",round(mm*10**3,2),\"*10**-3 bohr magneton/spin\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 6, Page number 11.32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "hysteresis loss per cycle is 188 J/m**3\n",
+ "hysteresis loss per second is 9400 watt/m**3\n",
+ "power loss is 1.23 watt/kg\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "A=94; #area(m**2)\n",
+ "vy=0.1; #value of length(weber/m**2)\n",
+ "vx=20; #value of unit length\n",
+ "n=50; #number of magnetization cycles\n",
+ "d=7650; #density(kg/m**3)\n",
+ "\n",
+ "#Calculation\n",
+ "h=A*vy*vx; #hysteresis loss per cycle(J/m**3)\n",
+ "hs=h*n; #hysteresis loss per second(watt/m**3)\n",
+ "pl=hs/d; #power loss(watt/kg)\n",
+ "\n",
+ "#Result\n",
+ "print \"hysteresis loss per cycle is\",int(h),\"J/m**3\"\n",
+ "print \"hysteresis loss per second is\",int(hs),\"watt/m**3\"\n",
+ "print \"power loss is\",round(pl,2),\"watt/kg\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example number 8, Page number 11.33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical field is 33.64 *10**3 ampere/m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "H0=64*10**3; #initial field(ampere/m)\n",
+ "T=5; #temperature(K)\n",
+ "Tc=7.26; #critical temperature(K)\n",
+ "\n",
+ "#Calculation\n",
+ "H=H0*(1-(T/Tc)**2); #critical field(ampere/m)\n",
+ "\n",
+ "#Result\n",
+ "print \"critical field is\",round(H/10**3,2),\"*10**3 ampere/m\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}