summaryrefslogtreecommitdiff
path: root/Semiconductor_circuit_approximations_by_A.P._Malvino/ch3.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Semiconductor_circuit_approximations_by_A.P._Malvino/ch3.ipynb')
-rw-r--r--Semiconductor_circuit_approximations_by_A.P._Malvino/ch3.ipynb636
1 files changed, 636 insertions, 0 deletions
diff --git a/Semiconductor_circuit_approximations_by_A.P._Malvino/ch3.ipynb b/Semiconductor_circuit_approximations_by_A.P._Malvino/ch3.ipynb
new file mode 100644
index 00000000..39c7b29e
--- /dev/null
+++ b/Semiconductor_circuit_approximations_by_A.P._Malvino/ch3.ipynb
@@ -0,0 +1,636 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 3 Special Diodes"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 3.1 Page No 53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The LED current = 21.28 mA\n"
+ ]
+ }
+ ],
+ "source": [
+ "# given data\n",
+ "Vin= 12.0## V\n",
+ "V_LED= 2## V\n",
+ "Rs= 470## Ω\n",
+ "Vs= Vin-V_LED## V\n",
+ "# The LED current \n",
+ "I= Vs/Rs## A\n",
+ "I= I*10**3## mA\n",
+ "print \"The LED current = %.2f mA\"%I"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 3.2 Page No 53"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "When supply voltage is 5 V, the LED current = 6.38 mA\n",
+ "When supply voltage is 10 V, the LED current = 17.02 mA\n",
+ "When supply voltage is 15 V, the LED current = 27.66 mA\n",
+ "When supply voltage is 20 V, the LED current = 38.30 mA\n"
+ ]
+ }
+ ],
+ "source": [
+ "# given data\n",
+ "Vin= 5.0## V\n",
+ "V_LED= 2.0## V\n",
+ "Rs= 470.0## Ω\n",
+ "Vs= Vin-V_LED## V\n",
+ "# When supply voltage is 5 V, the LED current\n",
+ "I= Vs/Rs## A\n",
+ "I= I*10**3## mA\n",
+ "print \"When supply voltage is 5 V, the LED current = %.2f mA\"%I\n",
+ "Vin= 10## V\n",
+ "Vs= Vin-V_LED## V\n",
+ "# When supply voltage is 10 V, the LED current\n",
+ "I= Vs/Rs## A\n",
+ "I= I*10**3## mA\n",
+ "print \"When supply voltage is 10 V, the LED current = %.2f mA\"%I\n",
+ "Vin= 15## V\n",
+ "Vs= Vin-V_LED## V\n",
+ "# When supply voltage is 15 V, the LED current\n",
+ "I= Vs/Rs## A\n",
+ "I= I*10**3## mA\n",
+ "print \"When supply voltage is 15 V, the LED current = %.2f mA\"%I\n",
+ "Vin= 20## V\n",
+ "Vs= Vin-V_LED## V\n",
+ "# When supply voltage is 20 V, the LED current\n",
+ "I= Vs/Rs## A\n",
+ "I= I*10**3## mA\n",
+ "print \"When supply voltage is 20 V, the LED current = %.2f mA\"%I"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 3.4 Page No 61"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The tuning range = 18.67\n"
+ ]
+ }
+ ],
+ "source": [
+ "# given data\n",
+ "C1= 560.0##transistor capacitance at 1V = %.2f pF\n",
+ "C2= 30##transistor capacitance at 10V = %.2f pF\n",
+ "# The tuning range \n",
+ "tuningRange= C1/C2#\n",
+ "print \"The tuning range = %.2f\"%tuningRange"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 3.5 Page No 68"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The minimum zener current = 12.20 mA\n",
+ "The maximum zener current = 36.59 mA\n",
+ "The output voltage = 10.00 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# given data\n",
+ "Vin_min= 20.0## V\n",
+ "Vin_max= 40.0## V\n",
+ "Vz= 10.0## V\n",
+ "Rs= 820.0## Ω\n",
+ "# The minimum zener current,\n",
+ "Iz_min= (Vin_min-Vz)/Rs## A\n",
+ "# The maximum zener current, \n",
+ "Iz_max= (Vin_max-Vz)/Rs## A\n",
+ "# The output voltage,\n",
+ "Vout= Vz## V\n",
+ "Iz_min= Iz_min*10**3## mA\n",
+ "Iz_max= Iz_max*10**3## mA\n",
+ "print \"The minimum zener current = %.2f mA\"%Iz_min\n",
+ "print \"The maximum zener current = %.2f mA\"%Iz_max\n",
+ "print \"The output voltage = %.2f V\"%Vout"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 3.6 Page No 70"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The minimum zener current = 11.95 mA\n",
+ "The maximum zener current = 35.84 mA\n",
+ "The minimum output voltage = 10.20 V\n",
+ "The maximum output voltage = 10.61 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# given data\n",
+ "Rs= 820.0## Ω\n",
+ "Rz= 17.0## Ω\n",
+ "R_T= Rs+Rz## Ω\n",
+ "Vz= 10.0## V\n",
+ "Vin_min= 20.0## V\n",
+ "Vin_max= 40.0## V\n",
+ "# The minimum zener current \n",
+ "Iz_min= (Vin_min-Vz)/R_T## A\n",
+ "# The maximum zener current \n",
+ "Iz_max= (Vin_max-Vz)/R_T## A\n",
+ "# The minimum output voltage \n",
+ "Vout_min= Vz+Iz_min*Rz## V\n",
+ "# The maximum output voltage \n",
+ "Vout_max= Vz+Iz_max*Rz## V\n",
+ "Iz_min= Iz_min*10**3## mA\n",
+ "Iz_max= Iz_max*10**3## mA\n",
+ "print \"The minimum zener current = %.2f mA\"%Iz_min\n",
+ "print \"The maximum zener current = %.2f mA\"%Iz_max\n",
+ "print \"The minimum output voltage = %.2f V\"%Vout_min\n",
+ "print \"The maximum output voltage = %.2f V\"%Vout_max"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 3.7 Page No 72"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The maximum current rating = 16.13 mA\n"
+ ]
+ }
+ ],
+ "source": [
+ "# given data\n",
+ "P= 100.0## power rating = %.2f mW\n",
+ "V= 6.2## V\n",
+ "# The maximum current rating \n",
+ "I_ZM= P/V## mA\n",
+ "print \"The maximum current rating = %.2f mA\"%I_ZM"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 3.8 Page No 73"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of I_S = 72.22 mA\n",
+ "The value of I_L = 60.00 mA\n",
+ "The value of I_Z = 12.22 mA\n"
+ ]
+ }
+ ],
+ "source": [
+ "# given data\n",
+ "Vz= 12.0## V\n",
+ "Vout= Vz## V\n",
+ "Vin= 25.0## V\n",
+ "R_S= 180.0## Ω\n",
+ "R_L= 200.0## Ω\n",
+ "# The value of I_S \n",
+ "I_S= (Vin-Vout)/R_S## A\n",
+ "# The value of I_L \n",
+ "I_L= Vout/R_L## A\n",
+ "# The value of I_Z \n",
+ "I_Z= I_S-I_L## A\n",
+ "I_S= I_S*10**3## mA\n",
+ "I_L= I_L*10**3## mA\n",
+ "I_Z= I_Z*10**3## mA\n",
+ "print \"The value of I_S = %.2f mA\"%I_S\n",
+ "print \"The value of I_L = %.2f mA\"%I_L\n",
+ "print \"The value of I_Z = %.2f mA\"%I_Z"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 3.9 Page No 73"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) For 200 Ω load resistance\n",
+ "The value of I_S = 72.22 mA\n",
+ "The value of I_L = 60.00 mA\n",
+ "The value of I_Z = 12.22 mA\n",
+ "(ii) For 400 Ω load resistance\n",
+ "The value of I_S = 72.22 mA\n",
+ "The value of I_L = 30.00 mA\n",
+ "The value of I_Z = 42.22 mA\n",
+ "(iii) For 600 Ω load resistance\n",
+ "The value of I_S = 72.22 mA\n",
+ "The value of I_L = 20.00 mA\n",
+ "The value of I_Z = 52.22 mA\n",
+ "(iv) For 800 Ω load resistance\n",
+ "The value of I_S = 72.22 mA\n",
+ "The value of I_L = 15.00 mA\n",
+ "The value of I_Z = 57.22 mA\n",
+ "(v) For 1 kΩ load resistance\n",
+ "The value of I_S = 72.22 mA\n",
+ "The value of I_L = 12.00 mA\n",
+ "The value of I_Z = 60.22 mA\n"
+ ]
+ }
+ ],
+ "source": [
+ "# given data\n",
+ "print \"(i) For 200 Ω load resistance\"\n",
+ "R_L= 200.0## Ω\n",
+ "Vz= 12.0## V\n",
+ "Vout= Vz## V\n",
+ "Vin= 25.0## V\n",
+ "R_S= 180.0## Ω\n",
+ "# The value of I_S \n",
+ "I_S= (Vin-Vout)/R_S## A\n",
+ "# The value of I_L \n",
+ "I_L= Vout/R_L## A\n",
+ "# The value of I_Z \n",
+ "I_Z= I_S-I_L## A\n",
+ "I_S= I_S*10**3## mA\n",
+ "I_L= I_L*10**3## mA\n",
+ "I_Z= I_Z*10**3## mA\n",
+ "print \"The value of I_S = %.2f mA\"%I_S\n",
+ "print \"The value of I_L = %.2f mA\"%I_L\n",
+ "print \"The value of I_Z = %.2f mA\"%I_Z\n",
+ "print \"(ii) For 400 Ω load resistance\"\n",
+ "R_L= 400## Ω\n",
+ "# The value of I_S \n",
+ "I_S= (Vin-Vout)/R_S## A\n",
+ "# The value of I_L \n",
+ "I_L= Vout/R_L## A\n",
+ "# The value of I_Z \n",
+ "I_Z= I_S-I_L## A\n",
+ "I_S= I_S*10**3## mA\n",
+ "I_L= I_L*10**3## mA\n",
+ "I_Z= I_Z*10**3## mA\n",
+ "print \"The value of I_S = %.2f mA\"%I_S\n",
+ "print \"The value of I_L = %.2f mA\"%I_L\n",
+ "print \"The value of I_Z = %.2f mA\"%I_Z\n",
+ "print \"(iii) For 600 Ω load resistance\"\n",
+ "R_L= 600## Ω\n",
+ "# The value of I_S \n",
+ "I_S= (Vin-Vout)/R_S## A\n",
+ "# The value of I_L \n",
+ "I_L= Vout/R_L## A\n",
+ "# The value of I_Z \n",
+ "I_Z= I_S-I_L## A\n",
+ "I_S= I_S*10**3## mA\n",
+ "I_L= I_L*10**3## mA\n",
+ "I_Z= I_Z*10**3## mA\n",
+ "print \"The value of I_S = %.2f mA\"%I_S\n",
+ "print \"The value of I_L = %.2f mA\"%I_L\n",
+ "print \"The value of I_Z = %.2f mA\"%I_Z\n",
+ "print \"(iv) For 800 Ω load resistance\"\n",
+ "R_L= 800## Ω\n",
+ "# The value of I_S \n",
+ "I_S= (Vin-Vout)/R_S## A\n",
+ "# The value of I_L \n",
+ "I_L= Vout/R_L## A\n",
+ "# The value of I_Z \n",
+ "I_Z= I_S-I_L## A\n",
+ "I_S= I_S*10**3## mA\n",
+ "I_L= I_L*10**3## mA\n",
+ "I_Z= I_Z*10**3## mA\n",
+ "print \"The value of I_S = %.2f mA\"%I_S\n",
+ "print \"The value of I_L = %.2f mA\"%I_L\n",
+ "print \"The value of I_Z = %.2f mA\"%I_Z\n",
+ "print \"(v) For 1 kΩ load resistance\"\n",
+ "R_L= 1*10**3## Ω\n",
+ "# The value of I_S \n",
+ "I_S= (Vin-Vout)/R_S## A\n",
+ "# The value of I_L \n",
+ "I_L= Vout/R_L## A\n",
+ "# The value of I_Z \n",
+ "I_Z= I_S-I_L## A\n",
+ "I_S= I_S*10**3## mA\n",
+ "I_L= I_L*10**3## mA\n",
+ "I_Z= I_Z*10**3## mA\n",
+ "print \"The value of I_S = %.2f mA\"%I_S\n",
+ "print \"The value of I_L = %.2f mA\"%I_L\n",
+ "print \"The value of I_Z = %.2f mA\"%I_Z"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 3.10 Page No 73"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The output voltage = 12.34 V\n"
+ ]
+ }
+ ],
+ "source": [
+ "# given data\n",
+ "R_Z= 7.0## Ω\n",
+ "I_Z1=12.2## mA\n",
+ "I_Z2=60.2## mA\n",
+ "deltaV_Z=(I_Z2-I_Z1)*R_Z## mV\n",
+ "deltaV_Z= deltaV_Z*10**-3## V\n",
+ "Vz= 12## V\n",
+ "# The output voltage,\n",
+ "Vout= Vz+deltaV_Z## V\n",
+ "print \"The output voltage = %.2f V\"%Vout"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 3.11 Page No 74"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of I_S = 15.00 mA\n",
+ "The value of I_L = 12.00 mA\n",
+ "The value of I_Z = 3.00 mA\n"
+ ]
+ }
+ ],
+ "source": [
+ "# given data\n",
+ "Vz= 12.0## V\n",
+ "Vin= 15.0## V\n",
+ "R_S= 200.0## Ω\n",
+ "R_L= 1*10**3## Ω\n",
+ "# The value of I_S \n",
+ "I_S= (Vin-Vz)/R_S## A\n",
+ "# The value of I_L \n",
+ "I_L= Vz/R_L## A\n",
+ "# The value of I_Z \n",
+ "I_Z= I_S-I_L## A\n",
+ "I_S= I_S*10**3## mA\n",
+ "I_L= I_L*10**3## mA\n",
+ "I_Z= I_Z*10**3## mA\n",
+ "print \"The value of I_S = %.2f mA\"%I_S\n",
+ "print \"The value of I_L = %.2f mA\"%I_L\n",
+ "print \"The value of I_Z = %.2f mA\"%I_Z"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Exa 3.12 Page No 75"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(i) For 15 V input voltage\n",
+ "The value of I_S = 15.00 mA\n",
+ "The value of I_L = 12.00 mA\n",
+ "The value of I_Z = 3.00 mA\n",
+ "(ii) For 20 V input voltage\n",
+ "The value of I_S = 40.00 mA\n",
+ "The value of I_L = 12.00 mA\n",
+ "The value of I_Z = 28.00 mA\n",
+ "(iii) For 25 V input voltage\n",
+ "The value of I_S = 65.00 mA\n",
+ "The value of I_L = 12.00 mA\n",
+ "The value of I_Z = 53.00 mA\n",
+ "(iv) For 30 V input voltage\n",
+ "The value of I_S = 90.00 mA\n",
+ "The value of I_L = 12.00 mA\n",
+ "The value of I_Z = 78.00 mA\n",
+ "(v) For 35 V input voltage\n",
+ "The value of I_S = 115.00 mA\n",
+ "The value of I_L = 12.00 mA\n",
+ "The value of I_Z = 103.00 mA\n"
+ ]
+ }
+ ],
+ "source": [
+ "# given data\n",
+ "print \"(i) For 15 V input voltage\"\n",
+ "Vin= 15.0## V\n",
+ "Vz= 12.0## V\n",
+ "R_S= 200.0## Ω\n",
+ "R_L= 1*10**3## Ω\n",
+ "# The value of I_S \n",
+ "I_S= (Vin-Vz)/R_S## A\n",
+ "# The value of I_L \n",
+ "I_L= Vz/R_L## A\n",
+ "# The value of I_Z \n",
+ "I_Z= I_S-I_L## A\n",
+ "I_S= I_S*10**3## mA\n",
+ "I_L= I_L*10**3## mA\n",
+ "I_Z= I_Z*10**3## mA\n",
+ "print \"The value of I_S = %.2f mA\"%I_S\n",
+ "print \"The value of I_L = %.2f mA\"%I_L\n",
+ "print \"The value of I_Z = %.2f mA\"%I_Z\n",
+ "print \"(ii) For 20 V input voltage\"\n",
+ "Vin= 20## V\n",
+ "# The value of I_S \n",
+ "I_S= (Vin-Vz)/R_S## A\n",
+ "# The value of I_L \n",
+ "I_L= Vz/R_L## A\n",
+ "# The value of I_Z \n",
+ "I_Z= I_S-I_L## A\n",
+ "I_S= I_S*10**3## mA\n",
+ "I_L= I_L*10**3## mA\n",
+ "I_Z= I_Z*10**3## mA\n",
+ "print \"The value of I_S = %.2f mA\"%I_S\n",
+ "print \"The value of I_L = %.2f mA\"%I_L\n",
+ "print \"The value of I_Z = %.2f mA\"%I_Z\n",
+ "print \"(iii) For 25 V input voltage\"\n",
+ "Vin= 25## V\n",
+ "# The value of I_S \n",
+ "I_S= (Vin-Vz)/R_S## A\n",
+ "# The value of I_L \n",
+ "I_L= Vz/R_L## A\n",
+ "# The value of I_Z \n",
+ "I_Z= I_S-I_L## A\n",
+ "I_S= I_S*10**3## mA\n",
+ "I_L= I_L*10**3## mA\n",
+ "I_Z= I_Z*10**3## mA\n",
+ "print \"The value of I_S = %.2f mA\"%I_S\n",
+ "print \"The value of I_L = %.2f mA\"%I_L\n",
+ "print \"The value of I_Z = %.2f mA\"%I_Z\n",
+ "print \"(iv) For 30 V input voltage\"\n",
+ "Vin= 30## V\n",
+ "# The value of I_S \n",
+ "I_S= (Vin-Vz)/R_S## A\n",
+ "# The value of I_L \n",
+ "I_L= Vz/R_L## A\n",
+ "# The value of I_Z \n",
+ "I_Z= I_S-I_L## A\n",
+ "I_S= I_S*10**3## mA\n",
+ "I_L= I_L*10**3## mA\n",
+ "I_Z= I_Z*10**3## mA\n",
+ "print \"The value of I_S = %.2f mA\"%I_S\n",
+ "print \"The value of I_L = %.2f mA\"%I_L\n",
+ "print \"The value of I_Z = %.2f mA\"%I_Z\n",
+ "print \"(v) For 35 V input voltage\"\n",
+ "Vin= 35## V\n",
+ "# The value of I_S \n",
+ "I_S= (Vin-Vz)/R_S## A\n",
+ "# The value of I_L \n",
+ "I_L= Vz/R_L## A\n",
+ "# The value of I_Z \n",
+ "I_Z= I_S-I_L## A\n",
+ "I_S= I_S*10**3## mA\n",
+ "I_L= I_L*10**3## mA\n",
+ "I_Z= I_Z*10**3## mA\n",
+ "print \"The value of I_S = %.2f mA\"%I_S\n",
+ "print \"The value of I_L = %.2f mA\"%I_L\n",
+ "print \"The value of I_Z = %.2f mA\"%I_Z"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}