summaryrefslogtreecommitdiff
path: root/Satellite_Communication_by_Anil_K.maini_Varsha_Agrawal/chapter_3.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Satellite_Communication_by_Anil_K.maini_Varsha_Agrawal/chapter_3.ipynb')
-rwxr-xr-xSatellite_Communication_by_Anil_K.maini_Varsha_Agrawal/chapter_3.ipynb745
1 files changed, 745 insertions, 0 deletions
diff --git a/Satellite_Communication_by_Anil_K.maini_Varsha_Agrawal/chapter_3.ipynb b/Satellite_Communication_by_Anil_K.maini_Varsha_Agrawal/chapter_3.ipynb
new file mode 100755
index 00000000..b87a50b4
--- /dev/null
+++ b/Satellite_Communication_by_Anil_K.maini_Varsha_Agrawal/chapter_3.ipynb
@@ -0,0 +1,745 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:eb32c126a333b2cfa51753626f865ad3fb2b120400bc606b82fb97538f18ae74"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 3: Satellite Launch and In-Orbit Operations"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 3.1, page no-72"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Variable Declaration\n",
+ "Az=85 # Azimuth angle of injection point\n",
+ "l=5.2 # latitude of launch site\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "cosi=math.sin(Az*math.pi/180)*math.cos(l*math.pi/180)\n",
+ "i=math.acos(cosi)\n",
+ "i=i*180.0/math.pi\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"Inclination angle attained, i=%.1f\u00b0\"%i)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Inclination angle attained, i=7.2\u00b0\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 3.2, page no-73"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Variable Declaration\n",
+ "delta_i=7 #orbital plane inclination\n",
+ "V=3000 #velocity of satellite in circularized orbit\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "vp=2*V*math.sin(delta_i*math.pi/(2*180))\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"Velocity thrust to make the inclination 0\u00b0 = %.0f m/s\"%vp)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Velocity thrust to make the inclination 0\u00b0 = 366 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 3.3, page no-73"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable Declaration\n",
+ "mu=39.8*10**13 # Nm^2/kg\n",
+ "P=7000.0*10**3 # Perigee distance in m\n",
+ "e=0.69 # eccentricity of eliptical orbit\n",
+ "w=60.0/2 # angle made by line joing centre of earth and perigee with the line of nodes\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "k=(e/math.sqrt(1+e))\n",
+ "k=math.floor(k*100)/100\n",
+ "v=2*(math.sqrt(mu/P))*k*math.sin(w*math.pi/180.0)\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The velocity thrust required to rotate the perigee point\\n by desired amount is given by, v=%.1f m/s = %.3fkm/s\"%(v,v/1000.0))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The velocity thrust required to rotate the perigee point\n",
+ " by desired amount is given by, v=3996.4 m/s = 3.996km/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 3.4, page no-74"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Variable Declaration\n",
+ "A=15000*10**3 #Original apogee distance\n",
+ "A1=25000*10**3 # Raised opogee distance\n",
+ "P=7000*10**3 # Perigee Distance\n",
+ "mu=39.8*10**13 #Nm**2/kg\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "A_d=A1-A\n",
+ "v=math.sqrt((2*mu/P)-(2*mu/(A+P)))\n",
+ "del_v=A_d*mu/(v*(A+P)**2)\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"required Thrust velocity Delta_v = %.1f m/s\"%del_v)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "required Thrust velocity Delta_v = 933.9 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 3.5, page no-75"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Variable Declaration\n",
+ "A=15000.0*10**3 # Original apogee distance\n",
+ "A1=7000.0*10**3 # Raised opogee distance\n",
+ "P=7000.0*10**3 # Perigee Distance\n",
+ "mu=39.8*10**13 # Nm^2/kg\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "A_d=A-A1\n",
+ "v=math.sqrt((2*mu/P)-(2*mu/(A+P)))\n",
+ "del_v=A_d*mu/(v*(A+P)**2)\n",
+ "\n",
+ "#Result\n",
+ "print(\"required Thrust velocity Delta_v = %.1f m/s\"%del_v)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "required Thrust velocity Delta_v = 747.1 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 3.6, page no-76"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "A=15000.0*10**3 # Original apogee distance\n",
+ "A1=16000.0*10**3 # Raised opogee distance\n",
+ "P=7000.0*10**3 # Perigee Distance\n",
+ "mu=39.8*10**13 # Nm**2/kg\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "A_d=A1-A\n",
+ "v=math.sqrt((2*mu/P)-(2*mu/(A+P)))\n",
+ "v=v*P/A\n",
+ "del_v=A_d*mu/(v*(A+P)**2)\n",
+ "\n",
+ "#Result\n",
+ "print(\"required Thrust velocity Delta_v = %.1f m/s\"%del_v)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "required Thrust velocity Delta_v = 200.1 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 3.7, page no-77"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Variable Declaration\n",
+ "R=6378.0*10**3 # Radius of earth\n",
+ "mu=39.8*10**13 # Nm**2/kg\n",
+ "r1=500.0*10**3 # original orbit from earths surface\n",
+ "r2=800.0*10**3 # orbit to be raised to thisdistance\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "R1=R+r1\n",
+ "R2=R+r2\n",
+ "delta_v=math.sqrt(2*mu*R2/(R1*(R1+R2)))-math.sqrt(mu/R1)\n",
+ "delta_v_dash=math.sqrt(mu/R2)-math.sqrt(2*mu*R1/(R2*(R1+R2)))\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"Two thrusts to be applied are,\\n Delta_v = %.2f m/s \\n Delta_v_dash = %.2f m/s\"%(delta_v,delta_v_dash))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Two thrusts to be applied are,\n",
+ " Delta_v = 80.75 m/s \n",
+ " Delta_v_dash = 79.89 m/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 3.8, page no-97"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Variable Declaration\n",
+ "H=36000.0 # Height of geostationary satellite from the surface of earth\n",
+ "R=6370.0 # Radius of earth in km\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "k=math.acos(R/(R+H))\n",
+ "#k=k*180/%pi\n",
+ "k=math.sin(k)\n",
+ "k=math.ceil(k*1000)/1000\n",
+ "d=2*(H+R)*k\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"Maximum line-of-sight distance is %.2f km\"%d)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum line-of-sight distance is 83807.86 km\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 3.9, page no-98"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Variable Declaration\n",
+ "H=36000.0 # Height of geostationary satellite from the surface of earth\n",
+ "R=6370.0 # Radius of earth in km\n",
+ "theta=20.0 # angular separation between two satellites\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "D=(H+R)\n",
+ "k=math.ceil(math.cos(theta*math.pi/180.0)*100)/100\n",
+ "d=math.sqrt(2*D**2*(1-k))\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The line-of-sight distance is %.4f km\"%d)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The line-of-sight distance is 14677.3985 km\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 3.10, page no-98"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable Declaration\n",
+ "\n",
+ "theta=37+74 # angular separation between two satellites\n",
+ "D=42164.0 # circular equilateral geostationary orbit in km\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "k=math.cos(math.pi*theta/180.0)\n",
+ "#printf(\"%f\\n\",k)\n",
+ "k=-0.357952\n",
+ "d=math.sqrt(2*D**2*(1-k))\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"Inter-satellite distance is %.2f km\"%d)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Inter-satellite distance is 69486.27 km\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 3.11, page no-99"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "theta_l=30.0 # earth station's location 30\u00b0W longitude\n",
+ "theta_s=50.0 # satellite's location 50\u00b0W longitude\n",
+ "theta_L=60.0 # earth station's location 60\u00b0N latitude\n",
+ "r=42164.0 # orbital radius of the satellite in km\n",
+ "R=6378.0 # Earth's radius in km\n",
+ "\n",
+ "A_dash=math.atan((math.tan(math.pi*(theta_s-theta_l)/180.0))/math.sin(math.pi*60/180.0))\n",
+ "A_dash=A_dash*180/math.pi\n",
+ "A=180+A_dash #Azimuth angle\n",
+ "\n",
+ "x=(180/math.pi)*math.acos(math.cos(math.pi*(theta_s-theta_l)/180.0)*math.cos(math.pi*theta_L/180))\n",
+ "y=r-math.ceil(R*(math.cos(math.pi*(theta_s-theta_l)/180.0)*math.cos(math.pi*theta_L/180)))\n",
+ "z=R*math.sin(math.pi*x/180)\n",
+ "E=(math.atan(y/z)*180/math.pi)-x\n",
+ "print(\"Azimuth angle =%.1f\u00b0\\n Elevation angle =%.1f\u00b0\"%(A,E))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Azimuth angle =202.8\u00b0\n",
+ " Elevation angle =19.8\u00b0\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 3.12, page no-100"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Variable Declaration\n",
+ "theta_l=60.0 #earth station's location 60\u00b0W longitude\n",
+ "theta_s=105.0 #satellite's location 105\u00b0W longitude\n",
+ "theta_L=30.0 #earth station's location 30\u00b0N latitude\n",
+ "\n",
+ "theta_l1=90.0 #earth station's location 90\u00b0W longitude\n",
+ "theta_s1=105.0 #satellite's location 105\u00b0W longitude\n",
+ "theta_L1=45.0 #earth station's location 45\u00b0N latitude\n",
+ "\n",
+ "c=3*10**8 # speed of light\n",
+ "r=42164.0 # orbital radius of the satellite in km\n",
+ "R=6378.0 # Earth's radius in km\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "\n",
+ "x=(180/math.pi)*math.acos(math.cos(math.pi*(theta_s-theta_l)/180)*math.cos(math.pi*theta_L/180))\n",
+ "y=r-math.ceil(R*(math.cos(math.pi*(theta_s-theta_l)/180)*math.cos(math.pi*theta_L/180)))\n",
+ "z=R*math.sin(math.pi*x/180)\n",
+ "E=(math.atan(y/z)*180/math.pi)-x\n",
+ "\n",
+ "x1=(180/math.pi)*math.acos(math.cos(math.pi*(theta_s1-theta_l1)/180)*math.cos(math.pi*theta_L1/180))\n",
+ "y1=r-math.ceil(R*(math.cos(math.pi*(theta_s1-theta_l1)/180)*math.cos(math.pi*theta_L1/180)))\n",
+ "z1=R*math.sin(math.pi*x1/180)\n",
+ "E1=(math.atan(y1/z1)*180/math.pi)-x1\n",
+ "E1=math.floor(E1)\n",
+ "\n",
+ "#calculation of slant range dx\n",
+ "k=(R/r)*math.cos(math.pi*E/180)\n",
+ "k=(180/math.pi)*math.asin(k)\n",
+ "k=k+E\n",
+ "k=math.sin(math.pi*k/180)\n",
+ "k=math.ceil(k*1000)/1000\n",
+ "#k=k+E\n",
+ "#k=sin(k)\n",
+ "dx=(R)**2+(r)**2-(2*r*R*k)\n",
+ "dx=math.sqrt(dx)\n",
+ "\n",
+ "\n",
+ "#calculation of slant range dy\n",
+ "k1=(R/r)*math.cos(math.pi*E1/180)\n",
+ "k1=(180/math.pi)*math.asin(k1)\n",
+ "k1=k1+E1\n",
+ "k1=math.floor(k1)\n",
+ "k1=math.sin(math.pi*k1/180)\n",
+ "k1=math.ceil(k1*1000)/1000\n",
+ "dy=(R)**2+(r)**2-(2*r*R*k1)\n",
+ "dy=math.sqrt(dy)\n",
+ "\n",
+ "tr=dy+dx\n",
+ "delay=tr*10**6/c\n",
+ "x=50\n",
+ "td=delay+x\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"Elevation angle, Ex =%.1f\u00b0\"%E)\n",
+ "print(\"\\n Elevation angle, Ey =%.1f\u00b0\"%math.floor(E1))\n",
+ "print(\"\\n Slant range dx of the earth station X is dx=%.2fkm\"%dx)\n",
+ "print(\"\\n Slant range dy of the earth station Y is dy=%.1fkm\"%dy)\n",
+ "print(\"\\n Therefore, total range to be covered is %.2fkm\"%tr)\n",
+ "print(\"\\n propagation delay=%.2fms\"%delay)\n",
+ "print(\"\\n\\n Time required too transmit 500 kbs of information at \\n a transmisssion speed of 10Mbps is given by 500000/10^7=%.0fms\"%(500000000.0/10**7))\n",
+ "print(\"\\n\\n Total Delay= %.2fms\"%td)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Elevation angle, Ex =30.3\u00b0\n",
+ "\n",
+ " Elevation angle, Ey =36.0\u00b0\n",
+ "\n",
+ " Slant range dx of the earth station X is dx=38584.76km\n",
+ "\n",
+ " Slant range dy of the earth station Y is dy=38100.8km\n",
+ "\n",
+ " Therefore, total range to be covered is 76685.57km\n",
+ "\n",
+ " propagation delay=255.62ms\n",
+ "\n",
+ "\n",
+ " Time required too transmit 500 kbs of information at \n",
+ " a transmisssion speed of 10Mbps is given by 500000/10^7=50ms\n",
+ "\n",
+ "\n",
+ " Total Delay= 305.62ms\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 3.13, page no-102"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Variable Declaration\n",
+ "da=38000.0 # slant range of satellite A\n",
+ "db=36000.0 # slant range of satellite B\n",
+ "beeta=60.0 # difference between longitudes of two satellites\n",
+ "R=42164.0 # radius of the orbit of satellites\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "theta=(da**2+db**2-2*(R**2)*(1-math.cos(math.pi*beeta/180)))/(2*da*db)\n",
+ "theta=(180/math.pi)*math.acos(theta)\n",
+ "d=math.sqrt(2*(R**2)*(1-math.cos(math.pi*beeta/180)))\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"Angular spacing between two satellites viewed by earth station is,\\n theta= %.1f\u00b0\"%theta)\n",
+ "print(\"\\nInter-satellite distance , d=%.0fkm\"%d)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Angular spacing between two satellites viewed by earth station is,\n",
+ " theta= 69.4\u00b0\n",
+ "\n",
+ "Inter-satellite distance , d=42164km\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 3.14, page no-107"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Variable Declaration\n",
+ "r=42164.0 # orbital radius of the satellite in km\n",
+ "R=6378.0 # Earth's radius in km\n",
+ "\n",
+ "#refer to Figure 3.53\n",
+ "\n",
+ "#Calculation\n",
+ "\n",
+ "#for E=0\u00b0\n",
+ "alfa=math.asin(R/r)*(180/math.pi)\n",
+ "alfa=math.floor(alfa*10)/10\n",
+ "theta=90-alfa\n",
+ "#in the right angle triangle OAC,\n",
+ "k=math.sin(math.pi*alfa/180)\n",
+ "k=math.floor(k*1000)/1000\n",
+ "oc=R*k\n",
+ "oc=math.ceil(oc*10)/10\n",
+ "A=2*math.pi*R*(R-oc)\n",
+ "\n",
+ "\n",
+ "#for E=10\u00b0\n",
+ "E=10\n",
+ "alfa1=math.asin((R/r)*math.cos(math.pi*E/180))*(180/math.pi)\n",
+ "#alfa1=ceil(alfa1*100)/100\n",
+ "theta1=90-alfa1-E\n",
+ "#in the right angle triangle OAC,\n",
+ "k1=math.sin(math.pi*(alfa1+E)/180)\n",
+ "k1=math.floor(k1*1000)/1000\n",
+ "oc1=R*k1\n",
+ "oc1=math.floor(oc1*10)/10\n",
+ "A1=2*math.pi*R*(R-oc1)\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"for E=0\u00b0,\\n covered surface area is %.1f km^2\"%A)\n",
+ "print(\"\\n\\n for E=10\u00b0,\\n covered surface area is %.1f km^2\"%A1)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "for E=0\u00b0,\n",
+ " covered surface area is 216997546.7 km^2\n",
+ "\n",
+ "\n",
+ " for E=10\u00b0,\n",
+ " covered surface area is 174314563.3 km^2\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 3.15, page no-108"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#variable declaration\n",
+ "theta=30 #satellite inclination to the equitorial plan\n",
+ "\n",
+ "\n",
+ "print(\"Extreme Northern latitude covered = %.0f\u00b0 N\"%theta)\n",
+ "print(\"\\n Extreme Southern latitude covered = %.0f\u00b0 S\"%theta)\n",
+ "print(\"\\n\\n In fact, the ground track would sweep\\n all latitudes between %d\u00b0N and %d\u00b0S\"%(theta,theta))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Extreme Northern latitude covered = 30\u00b0 N\n",
+ "\n",
+ " Extreme Southern latitude covered = 30\u00b0 S\n",
+ "\n",
+ "\n",
+ " In fact, the ground track would sweep\n",
+ " all latitudes between 30\u00b0N and 30\u00b0S\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file