summaryrefslogtreecommitdiff
path: root/Satellite_Communication_by_Anil_K.maini_Varsha_Agrawal/chapter_2.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Satellite_Communication_by_Anil_K.maini_Varsha_Agrawal/chapter_2.ipynb')
-rwxr-xr-xSatellite_Communication_by_Anil_K.maini_Varsha_Agrawal/chapter_2.ipynb820
1 files changed, 820 insertions, 0 deletions
diff --git a/Satellite_Communication_by_Anil_K.maini_Varsha_Agrawal/chapter_2.ipynb b/Satellite_Communication_by_Anil_K.maini_Varsha_Agrawal/chapter_2.ipynb
new file mode 100755
index 00000000..62e9c6de
--- /dev/null
+++ b/Satellite_Communication_by_Anil_K.maini_Varsha_Agrawal/chapter_2.ipynb
@@ -0,0 +1,820 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "chapter 2: Satellite Orbits and Trajectories"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.1, page no-36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable Declaration\n",
+ "r1=6370.0 # Earth's Orbit in km\n",
+ "r2=630.0 # Height of satellite from surface in km\n",
+ "G=6.67*10**-11 # Gravitational constant inNm^2/kg^2\n",
+ "M=5.98*10**24 # Mass of earth in kg\n",
+ "\n",
+ "#Calculation\n",
+ "R=r1+r2\n",
+ "v=math.sqrt(G*M/(R*10**3))\n",
+ "\n",
+ "#Result\n",
+ "print(\"The velocity of sattelite %.2fkm/s\"%(math.floor(v/10)*10**-2))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The velocity of sattelite 7.54km/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.2, page no-37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable Declaration\n",
+ "A=45000.0 #Apogee in km\n",
+ "P=7000.0 #Perigee in km\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "#(a)\n",
+ "a=(A+P)/2\n",
+ "#(b)\n",
+ "e=(A-P)/(2*a)\n",
+ "#(c)\n",
+ "e=(math.floor(e*100))/100\n",
+ "d=a*e\n",
+ "\n",
+ "#Result\n",
+ "print(\"(a)\\nSemi-major axis of elliptical orbit is %d km\"%a)\n",
+ "print(\"\\n(b)\\nEccentricity = %.2f\"%e)\n",
+ "print(\"\\n(c)\\nThe distance between centre of earth and centre of ellipse is %d km \"%d)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a)\n",
+ "Semi-major axis of elliptical orbit is 26000 km\n",
+ "\n",
+ "(b)\n",
+ "Eccentricity = 0.73\n",
+ "\n",
+ "(c)\n",
+ "The distance between centre of earth and centre of ellipse is 18980 km \n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.3, page no-37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "ma=42000.0 # Major axis distance in Km\n",
+ "P=8000.0 # Perigee distance in Km\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "A=ma-P\n",
+ "e=(A-P)/ma\n",
+ "\n",
+ "#Result\n",
+ "print(\"Apogee=%dkm\\n Eccentricity=%.2f\"%(A,e))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Apogee=34000km\n",
+ " Eccentricity=0.62\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.4, page no-37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#Variable Declaration\n",
+ "e=0.6 #Eccentricity\n",
+ "d=18000.0 #distance between earth's centre and centre of ellipse\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "a=d/e\n",
+ "A=a*(1+e)\n",
+ "P=a*(1-e)\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"Semi-major axis of elliptical orbit is %d km\\n Apogee distance=%dkm\\n Perigee distance=%dkm\"%(a,A,P))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Semi-major axis of elliptical orbit is 30000 km\n",
+ " Apogee distance=48000km\n",
+ " Perigee distance=12000km\n"
+ ]
+ }
+ ],
+ "prompt_number": 19
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.5, page no-38"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "AP_diff=30000.0 #difference between apogee and perigee in km\n",
+ "AP_sum=62800.0 #Apogee+perigee\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "E=AP_diff/AP_sum\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"Orbit Eccentricity= %.3f\"%E)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Orbit Eccentricity= 0.478\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.6, page no-38"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Variable Declaration\n",
+ "R=7000.0*10**3 # sattelite orbit in m\n",
+ "mu=39.8*10**13 # constant G*M in Nm^2/kg\n",
+ "A=47000.0*10**3 # appogee distance in m\n",
+ "P=7000.0*10**3 # perigee distance in m\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "v=math.sqrt(mu/R)\n",
+ "a=(A+P)/2\n",
+ "v1=math.sqrt(mu*((2/R)-(1/a)))\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"Velocity of satellite A at point X is v=%.2fkm/s\\nVelocity of satellite B at point X is V=%.3fkm/s\"%(v/1000,v1/1000))\n",
+ "#value in book is different at 3rd decimal place."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Velocity of satellite A at point X is v=7.54km/s\n",
+ "Velocity of satellite B at point X is V=9.949km/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.7, page no-39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable Declaration\n",
+ "R=42000.0*10**3 #sattelite orbit in m\n",
+ "mu=39.8*10**13 #constant G*M in Nm^2/kg\n",
+ "A=42000.0*10**3 #appogee distance in m\n",
+ "P=7000.0*10**3 #perigee distance in m\n",
+ "\n",
+ "#Calculation\n",
+ "v=math.sqrt(mu/R)\n",
+ "a=(A+P)/2\n",
+ "v1=math.sqrt(mu*((2/R)-(1/a)))\n",
+ "\n",
+ "#Result\n",
+ "print(\"Velocity of satellite A at point X is v=%.3fkm/s\\n Velocity of satellite B at point X is V=%.3fkm/s\"%(v/1000,v1/1000))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Velocity of satellite A at point X is v=3.078km/s\n",
+ " Velocity of satellite B at point X is V=1.645km/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 22
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.8, page no-40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Variable Declaration\n",
+ "R=25000.0*10**3 #sattelite orbit in m\n",
+ "mu=39.8*10**13 #constant G*M in Nm^2/kg\n",
+ "A=43000.0*10**3 #appogee distance in m\n",
+ "P=7000.0*10**3 #perigee distance in m\n",
+ "\n",
+ "#Calculation\n",
+ "v=math.sqrt(mu/R)\n",
+ "a=(A+P)/2\n",
+ "v1=math.sqrt(mu*((2/R)-(1/a)))\n",
+ "\n",
+ "#Result\n",
+ "print(\"Velocity of satellite A at point X is v=%.3fkm/s\\n Velocity of satellite B at point X is V=%.3fkm/s\"%(v/1000,v1/1000))\n",
+ "#value in book is different at 3rd decimal place."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Velocity of satellite A at point X is v=3.990km/s\n",
+ " Velocity of satellite B at point X is V=3.990km/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.9, page no-40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Variable Declaration\n",
+ "a=(50000.0/2)*10**3 #Semi-major axis in m\n",
+ "mu=39.8*10**13 #constant G*M in Nm^2/kg\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "T=2*math.pi*math.sqrt((a**3)/mu) #math.pi gives variation in answer\n",
+ "h=T/(60*60)\n",
+ "x=T%3600\n",
+ "m=x/60\n",
+ "s=x%60\n",
+ "\n",
+ "#Result\n",
+ "print(\"Orbital time period is given by, T = %dsec\\n\\t\\t\\t\\t = %dh %dm %ds\"%(T,math.floor(h),math.floor(m),math.floor(s)))\n",
+ "#value in book is different for seconds."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Orbital time period is given by, T = 39368sec\n",
+ "\t\t\t\t = 10h 56m 8s\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.10, page no-42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "a1=18000.0*10**3 #Semi-major axis for first satellite in m\n",
+ "a2=24000.0*10**3 #Semi-major axis f0r 2nd satellite in m\n",
+ "\n",
+ "#Calculation\n",
+ "T2_by_T1=(a2/a1)**(3.0/2.0)\n",
+ "\n",
+ "#Result\n",
+ "print(\"Orbital time period of sattelite 2 is %.2f times that of sattelite 1\"%T2_by_T1)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Orbital time period of sattelite 2 is 1.54 times that of sattelite 1\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.11, page no-42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Variable Declaration\n",
+ "a=25000.0*10**3 #appogee distance in m\n",
+ "b=18330.0*10**3 #perigee distance in m\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "e=(math.sqrt(a**2-b**2)/a)\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"Apogee distance = a(1+e)= %dkm\\n Perigee distance = a(1-e)= %dkm\\n\"%(a*(1+e)/1000,math.ceil(a*(1-e)/1000)))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Apogee distance = a(1+e)= 42000km\n",
+ " Perigee distance = a(1-e)= 8000km\n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.12, page no-43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "e=0.6 # eccentricity of elliptical orbit\n",
+ "a=0.97 # area of shaded region\n",
+ "b=2.17 # Area of non-shaded region\n",
+ "t=3 # time taken by satellite to move from pt B to A\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "x=b/a\n",
+ "y=x*t\n",
+ "\n",
+ "#Result\n",
+ "print(\"Time taken by satellite to move from A to B is %.3f hours \"%y)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Time taken by satellite to move from A to B is 6.711 hours \n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.13, page no-44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Variable Declaration\n",
+ "A=42000.0 # Apogee in km\n",
+ "P=8000.0 # Perigee in km\n",
+ "v_p=9.142 # velocity at perigee point\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "v_a=v_p*P/A\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"Velocity at apogee = %.3f km/s\"%v_a)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Velocity at apogee = 1.741 km/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.14, page no-44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable Declaration\n",
+ "theta=56.245 #angle made by direction of satellite with local horizontal\n",
+ "d=16000.0 #distance of particular point\n",
+ "P=8000.0 #Perigee in m\n",
+ "v_p=9.142 #velocity at perigee point\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "v=(P*v_p)/(d*math.floor(math.cos(theta*math.pi/180)*1000)/1000)\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"The velocity of satellite at that particular point is %.3f km/s\"%v)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The velocity of satellite at that particular point is 8.236 km/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.16, page no-49"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Variable Declaration\n",
+ "A1=12000.0 # first Apogee distance\n",
+ "P=8000.0 # Perigee distance\n",
+ "v1=1.0 # assume v1 as 1\n",
+ "v2=1.2*v1 # 20% higher than v1 \n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "x=(v2/v1)**2\n",
+ "k=(((1+(P/A1))/x)-1)\n",
+ "k=math.floor(k*10**4)/10**4\n",
+ "A2=P/k\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print(\"A2 = %.0fkm\"%math.ceil(A2))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "A2 = 50826km\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.17, page no-50"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#Variable Declaration\n",
+ "vp=8.0 # horizontal velocity of satellite in km/s\n",
+ "r=1620.0 # distance from earth's surface in km\n",
+ "R=6380.0 # Earth's radius in km\n",
+ "d=10000.0 # distance of point at which velocity to be calculated\n",
+ "theta=30.0 # angle made by satellite with local horzon at that point\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "P=r+R\n",
+ "v=(vp*P)/(d*math.cos(theta*math.pi/180))\n",
+ "\n",
+ "#Result\n",
+ "print(\"v = %.2f km/s\"%v)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "v = 7.39 km/s\n"
+ ]
+ }
+ ],
+ "prompt_number": 31
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.18, page no-50"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable Declaration\n",
+ "r=620.0 # distance from earth's surface in km\n",
+ "vp=8.0 # horizontal velocity of satelliteat 9000km height in km/s\n",
+ "R=6380.0 # Earth's radius in km\n",
+ "d=9000.0 # distance of point at which velocity to be calculated\n",
+ "theta=30.0 # angle made by satellite with local horzon at that point\n",
+ "mu=39.8*10**13 # Nm**2/kg\n",
+ "\n",
+ "\n",
+ "#Calculation\n",
+ "P=r+R\n",
+ "m=vp*d*math.cos(theta*math.pi/180)/P #m=sqrt((2mu/P)-[2mu/(A+P)])\n",
+ "m=(m*10**3)**2\n",
+ "x=(2*mu/(P*10**3))-m #x=[2mu/(A+P)]\n",
+ "x=math.floor(x/10**4)*10**4\n",
+ "k=(2*mu)/x #k=A+P\n",
+ "k=math.ceil(k/10**4)*10**4\n",
+ "A=k-(P*10**3)\n",
+ "\n",
+ "#Result\n",
+ "print(\"A = %.0f km\"%(A/1000))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "A = 16170 km\n"
+ ]
+ }
+ ],
+ "prompt_number": 32
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.19, page no-58"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "#variable declaration\n",
+ "R=6380 #Earth's radius in km\n",
+ "T=86160 #Orbital period of Geostationary satellite in km\n",
+ "mu=39.8*10**13 #in Nm^2/k\n",
+ "\n",
+ "#calculations\n",
+ "\n",
+ "r=(T*math.sqrt(mu)/(2*math.pi))**(2.0/3.0) # Answer matches to the answer given in the book if value of pi is taken as 3.14 \n",
+ "\n",
+ "#Result\n",
+ "print('Radius of satellite is, r = %.0f km'%(r/1000))\n",
+ "print('Therefore, height of satellite orbit above earth surface is %.0f km '%((r/1000)-R))"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Radius of satellite is, r = 42142 km\n",
+ "Therefore, height of satellite orbit above earth surface is 35762 km \n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 2.20, page no-59"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "#variable declaration\n",
+ "\n",
+ "R=6380 #radius of earth in km\n",
+ "P=400 #Perigee distance in km\n",
+ "A=40000 #Apogee distance in km\n",
+ "mu=39.8*10**13 #in Nm^2/k\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "a=(A+P+R+R)/2 #semi-major axis of the elliptical orbit\n",
+ "\n",
+ "T=(2*math.pi*(a*10**3)**(3.0/2.0))/math.sqrt(mu)\n",
+ "\n",
+ "h=T/(60*60)\n",
+ "x=T%3600\n",
+ "m=x/60\n",
+ "s=x%60\n",
+ "\n",
+ "#Result\n",
+ "print('T = %dsec\\n = %dh %dm %ds\\n\\nThis approximately equal to 12 hour'%(T,math.floor(h),math.floor(m),math.floor(s)))\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "T = 43158sec\n",
+ " = 11h 59m 18s\n",
+ "\n",
+ "This approximately equal to 12 hour\n"
+ ]
+ }
+ ],
+ "prompt_number": 34
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file