summaryrefslogtreecommitdiff
path: root/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap1_Introduction.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap1_Introduction.ipynb')
-rw-r--r--SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap1_Introduction.ipynb1467
1 files changed, 1467 insertions, 0 deletions
diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap1_Introduction.ipynb b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap1_Introduction.ipynb
new file mode 100644
index 00000000..a5f2c912
--- /dev/null
+++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap1_Introduction.ipynb
@@ -0,0 +1,1467 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "# Chapter 1: Introduction\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem1, pg 25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 24,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "true length= 327.4905\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "l=20; #chain length\n",
+ "e=0.03; #error\n",
+ "l1=l+e; #L'\n",
+ "ml=327; #measured length\n",
+ "truel=(l1/l)*(ml) #true length\n",
+ "print (\"true length=\",truel)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem2, pg 25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 25,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "amount of error= 0.20083682008368697\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "l1=20; #chain 1 length\n",
+ "e=0.05; #error\n",
+ "l11=l1+e; \n",
+ "ml1=1200; #measured lenght\n",
+ "tl=(l11/l1)*ml1; #true lenght of line\n",
+ "\n",
+ "l2=30; #chain 2 length\n",
+ "ml2=1195; #measured length\n",
+ "\n",
+ "l21=(tl/ml2)*l2; \n",
+ "ae=l21-l2; #amount of error\n",
+ "print('amount of error=',ae)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem3, pg 25"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 26,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "true length1= 901.35\n",
+ "true length 2= 678.3750000000001\n",
+ "true distance= 1579.7250000000001\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "l1=20\n",
+ "e=(0.06/2) #consider mean elongation\n",
+ "l11=l1+e;\n",
+ "ml=900;\n",
+ "tl=(l11/l1)*ml;\n",
+ "print('true length1=',tl)\n",
+ "l2=20;\n",
+ "e2=(0.06+0.14)/2;\n",
+ "l21=20+e2;\n",
+ "ml2=1575-ml;\n",
+ "\n",
+ "tl2=(l21/l2)*ml2;\n",
+ "print('true length 2=',tl2)\n",
+ "td=tl+tl2;\n",
+ "print('true distance=',td)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem4, pg26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 27,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "distance between stations on map= 35.0 centimeters\n",
+ "true distance on ground = 1750.0 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "s=100;\n",
+ "dsm=3500;\n",
+ "adsm=dsm/s;\n",
+ "\n",
+ "print('distance between stations on map=',adsm,'centimeters')\n",
+ "\n",
+ "actuals=50;\n",
+ "td=adsm*actuals;\n",
+ "\n",
+ "print('true distance on ground =',td,'meters')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 5, pg 26"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 28,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "actual area present= 132.01840894148586 square cm\n",
+ "true area= 212286.9217619987 square meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "present=19.5\n",
+ "actual=20;\n",
+ "cm1=actual/present;\n",
+ "cm12=(actual*actual)/(present*present);\n",
+ "pm=125.5;\n",
+ "apm=pm*cm12;\n",
+ "print('actual area present=',apm,'square cm');\n",
+ "\n",
+ "cm=40;\n",
+ "cm2=cm*cm;\n",
+ "\n",
+ "area=cm2*apm;\n",
+ "scale=(20.05*20.05)/(20*20);\n",
+ "ta=scale*area;\n",
+ "print('true area=',ta,'square meters');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 6, pg 27"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 29,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " for n=1\n",
+ "the temperature correction is 0.00396 meters\n",
+ "the pull corretion is 0.002380952380952381 meters\n",
+ "the sag correction is -0.0026680499999999995 meters\n",
+ "the total correction is 0.0036729023809523816 meters\n",
+ "the true length is 780.0954954619046\n",
+ " for n=2\n",
+ "the temperature correction is 0.00396 meters\n",
+ "the pull corretion is 0.002380952380952381 meters\n",
+ "the sag correction is -0.0006670124999999999 meters\n",
+ "the total correction is 0.005673939880952382 meters\n",
+ "the true length is 780.1475224369049\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "L=30;\n",
+ "t0=20;\n",
+ "p0=10;\n",
+ "pm=15;\n",
+ "tm=32;\n",
+ "a=0.03;\n",
+ "al=11/(1000000);\n",
+ "E=2.1*(1000000);\n",
+ "w=0.693;\n",
+ "ml=780;\n",
+ "n=1;\n",
+ "print(' for n=1')\n",
+ "ct=al*L*(tm-t0);\n",
+ "print('the temperature correction is',ct,'meters');\n",
+ "\n",
+ "cp=(pm-p0)*L/(a*E);\n",
+ "print('the pull corretion is ',cp,' meters');\n",
+ "\n",
+ "cs=-L*w*w/(24*pm*pm*n*n);\n",
+ "print('the sag correction is ',cs,'meters');\n",
+ "\n",
+ "e=ct+cp+cs;\n",
+ "print('the total correction is ',e,'meters');\n",
+ "\n",
+ "l1=L+e;\n",
+ "\n",
+ "truelength=(l1/L)*ml;\n",
+ "print('the true length is ',truelength);\n",
+ "\n",
+ "n=2;\n",
+ "\n",
+ "print(' for n=2')\n",
+ "ct=al*L*(tm-t0);\n",
+ "print('the temperature correction is',ct,'meters');\n",
+ "\n",
+ "cp=(pm-p0)*L/(a*E);\n",
+ "print('the pull corretion is ',cp,' meters');\n",
+ "\n",
+ "cs=-L*w*w/(24*pm*pm*n*n);\n",
+ "print('the sag correction is ',cs,'meters');\n",
+ "\n",
+ "e=ct+cp+cs;\n",
+ "print('the total correction is ',e,'meters');\n",
+ "\n",
+ "l1=L+e;\n",
+ "\n",
+ "truelength=(l1/L)*ml;\n",
+ "print('the true length is ',truelength);\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 7, pg 28"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 30,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the temperature correction is 0.0021999999999999997 meters\n",
+ "the pull corretion is -0.002380952380952381 meters\n",
+ "the sag correction is -0.0013333333333333335 meters\n",
+ "the total correction is -0.001514285714285715 meters\n",
+ "the horizontal distance is 19.998485714285714\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "L=20;\n",
+ "t0=20;\n",
+ "p0=15;\n",
+ "p=10;\n",
+ "tm=30;\n",
+ "a=0.02;\n",
+ "al=11/(1000000);\n",
+ "E=2.1*(1000000);\n",
+ "w=0.4;\n",
+ "\n",
+ "n=1;\n",
+ "ct=al*L*(tm-t0);\n",
+ "print('the temperature correction is',ct,'meters');\n",
+ "\n",
+ "cp=(p-p0)*L/(a*E);\n",
+ "print('the pull corretion is ',cp,' meters');\n",
+ "\n",
+ "cs=-L*w*w/(24*p*p*n*n);\n",
+ "print('the sag correction is ',cs,'meters');\n",
+ "\n",
+ "e=ct+cp+cs;\n",
+ "print('the total correction is ',e,'meters');\n",
+ "\n",
+ "hd=L+e;\n",
+ "\n",
+ "print('the horizontal distance is ',hd);\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 8, pg 29"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 31,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "for p=5 case\n",
+ "the temperature correction is 0.00165 meters\n",
+ "the pull corretion is 0.0 meters\n",
+ "the sag correction is -0.02178 meters\n",
+ "the total correction is -0.020130000000000002 meters\n",
+ "the horizontal distance is 29.97987\n",
+ "for p=11 case\n",
+ "the temperature correction is 0.00165 meters\n",
+ "the pull corretion is 0.004285714285714286 meters\n",
+ "the sag correction is -0.0045000000000000005 meters\n",
+ "the total correction is 0.001435714285714285 meters\n",
+ "the horizontal distance is 30.001435714285716\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "L=30;\n",
+ "t0=20;\n",
+ "p0=5;\n",
+ "tm=25;\n",
+ "a=0.02;\n",
+ "al=11/(1000000);\n",
+ "E=2.1*(1000000);\n",
+ "float(E);\n",
+ "float(al);\n",
+ "w1=22;\n",
+ "w=0.66;\n",
+ "n=1;\n",
+ "\n",
+ "p=5;\n",
+ "print('for p=5 case');\n",
+ "\n",
+ "ct=al*L*(tm-t0);\n",
+ "float(ct);\n",
+ "print('the temperature correction is',ct,'meters');\n",
+ "\n",
+ "cp=(p-p0)*L/(a*E);\n",
+ "print('the pull corretion is ',cp,' meters');\n",
+ "\n",
+ "cs=-L*w*w/(24*p*p*n*n);\n",
+ "print('the sag correction is ',cs,'meters');\n",
+ "\n",
+ "e=ct+cp+cs;\n",
+ "print('the total correction is ',e,'meters');\n",
+ "\n",
+ "hd=L+e;\n",
+ "\n",
+ "print('the horizontal distance is ',hd);\n",
+ "\n",
+ "p=11;\n",
+ "print('for p=11 case');\n",
+ "\n",
+ "ct=al*L*(tm-t0);\n",
+ "print('the temperature correction is',ct,'meters');\n",
+ "\n",
+ "cp=(p-p0)*L/(a*E);\n",
+ "print('the pull corretion is ',cp,' meters');\n",
+ "\n",
+ "cs=-L*w*w/(24*p*p*n*n);\n",
+ "print('the sag correction is ',cs,'meters');\n",
+ "\n",
+ "e=ct+cp+cs;\n",
+ "print('the total correction is ',e,'meters');\n",
+ "\n",
+ "hd=L+e;\n",
+ "\n",
+ "print('the horizontal distance is ',hd);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 9, pg 30"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the temperature correction is 0.00264 meters\n",
+ "the pull corretion is 0.003492063492063492 meters\n",
+ "the sag correction is -0.001171875 meters\n",
+ "the total correction is 0.004960188492063492 meters\n",
+ "the true length is 680.1686464087301\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "\n",
+ "L=20;\n",
+ "t0=20;\n",
+ "p0=5;\n",
+ "pm=16;\n",
+ "tm=32;\n",
+ "a=0.03;\n",
+ "al=11/(1000000);\n",
+ "E=2.1*(1000000);\n",
+ "w=0.6;\n",
+ "ml=680;\n",
+ "n=1;\n",
+ "\n",
+ "\n",
+ "ct=al*L*(tm-t0);\n",
+ "print('the temperature correction is',ct,'meters');\n",
+ "\n",
+ "cp=(pm-p0)*L/(a*E);\n",
+ "print('the pull corretion is ',cp,' meters');\n",
+ "\n",
+ "cs=-L*w*w/(24*pm*pm*n*n);\n",
+ "print('the sag correction is ',cs,'meters');\n",
+ "\n",
+ "e=ct+cp+cs;\n",
+ "print('the total correction is ',e,'meters');\n",
+ "\n",
+ "l1=L+e;\n",
+ "\n",
+ "truelength=(l1/L)*ml;\n",
+ "print('the true length is ',truelength);"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 10, pg 31"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "the temperature correction is 0.0061600000000000005 meters\n",
+ "the pull corretion is -0.0033333333333333335 meters\n",
+ "the sag correction is -0.008979994074074075 meters\n",
+ "the total correction is -0.006153327407407408 meters\n",
+ "the correctt distance is 679.8505620486773\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "\n",
+ "L=28;\n",
+ "t0=20;\n",
+ "p0=10;\n",
+ "pm=5;\n",
+ "tm=40;\n",
+ "a=0.02;\n",
+ "al=11/(1000000);\n",
+ "E=2.1*(1000000);\n",
+ "w1=470;\n",
+ "ml=680;\n",
+ "n=1;\n",
+ "\n",
+ "w=(470*28)/30;\n",
+ "w=w/1000;\n",
+ "\n",
+ "ct=al*L*(tm-t0);\n",
+ "print('the temperature correction is',ct,'meters');\n",
+ "\n",
+ "cp=(pm-p0)*L/(a*E);\n",
+ "print('the pull corretion is ',cp,' meters');\n",
+ "\n",
+ "cs=-L*w*w/(24*pm*pm*n*n);\n",
+ "print('the sag correction is ',cs,'meters');\n",
+ "\n",
+ "e=ct+cp+cs;\n",
+ "print('the total correction is ',e,'meters');\n",
+ "\n",
+ "l1=L+e;\n",
+ "\n",
+ "dis=(l1/L)*ml;\n",
+ "print('the correctt distance is ',dis);\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 11, pg32"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "from fig p.1.1\n",
+ "87\n",
+ " the value of EF is 135.34797293685585 meters\n",
+ " the value of DF is 103.68256255569626 meters\n",
+ " the value of EG is 205.85953773426738 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-1, problems on obstacles in chaining, page-32,pb-1\n",
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math;\n",
+ "\n",
+ "print('from fig p.1.1')\n",
+ "DE=87;\n",
+ "print(DE);\n",
+ "EF=float(87/(math.cos(50*(math.pi/180))))\n",
+ "\n",
+ "DF=87*(math.tan(50*(math.pi/180)))\n",
+ "\n",
+ "EG=87/(math.cos(65*(math.pi/180)))\n",
+ "\n",
+ "\n",
+ "print(' the value of EF is ',EF,'meters');\n",
+ "\n",
+ "print(' the value of DF is ',DF,'meters');\n",
+ "\n",
+ "print(' the value of EG is ',EG,'meters'); \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 12, pg 33"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "width of river is 227.23577649516116 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-1 page-33, pb-2\n",
+ "import math\n",
+ "\n",
+ "\n",
+ "x=(380.0285/2.5754);\n",
+ "\n",
+ "PA=x;\n",
+ "AQ=367-x;\n",
+ "al=180-(36.45+86.55);\n",
+ "bt=86.35-40-35;\n",
+ "\n",
+ "TA=AQ*math.tan(46*(math.pi/180));\n",
+ "\n",
+ "print('width of river is ',TA,'meters');\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Problem 13, pg 34"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "width of river is 316.63370603933663 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "# cha-1 page-34 pb-3\n",
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "x=(849.224)/2.6196\n",
+ "\n",
+ "\n",
+ "\n",
+ "PA=x;\n",
+ "AQ=517-x;\n",
+ "al=78-33.67;\n",
+ "bt=180-(43.333+78);\n",
+ "\n",
+ "TA=AQ*math.tan(58.66*(math.pi/180));\n",
+ "\n",
+ "print('width of river is ',TA,'meters');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 14, pg35"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "chainage of C is 277.08203230275507 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "# cha-1 page-34,35 pb-4\n",
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "al=288.5-(48.5+180);\n",
+ "bt=90-48.5;\n",
+ "BAC=360-41.5;\n",
+ "\n",
+ "AC=40*(math.tan(60*(math.pi/180)));\n",
+ "\n",
+ "A=207.8;\n",
+ "\n",
+ "C=A+AC;\n",
+ "\n",
+ "print('chainage of C is',C,'meters');\n",
+ " \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### Problem 15, pg36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "width of the river is 74.99999999999999 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "\n",
+ "import math\n",
+ "BB=287.25;\n",
+ "MC=62.25;\n",
+ "al=(BB-180)-MC;\n",
+ "BM=75;\n",
+ "BC=BM*(math.tan(45*(math.pi/180)))\n",
+ "\n",
+ "print('width of the river is ',BC,'meters')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### Problem 16, pg 36"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 39,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "AB= 241.8677324489565\n"
+ ]
+ }
+ ],
+ "source": [
+ "#CH-1 PAGE-36 PB-6;\n",
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "\n",
+ "AC=250;\n",
+ "AD=300;\n",
+ "DB=150;\n",
+ "BC=100;\n",
+ "DC=DB+BC;\n",
+ "\n",
+ "cosal=(AD*AD+DC*DC-(AC*AC))/(2*AD*DC);\n",
+ "\n",
+ "AB=math.sqrt((AD*AD+DB*DB)-2*(AD*DB*cosal));\n",
+ "\n",
+ "print('AB=',AB);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 17, pg37"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 40,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "al 63.43494882292201\n",
+ "bt= 26.56505117707799\n",
+ "k= 0.5\n",
+ "chinage of c is 375.5 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "# ch-1 page-36,37 pb-7\n",
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "BE=50;\n",
+ "AB=25;\n",
+ "AEC=157.5-67.5;\n",
+ "\n",
+ "al=math.atan2(BE,AB);\n",
+ "al=al*(180/math.pi);\n",
+ "\n",
+ "print('al',al)\n",
+ "\n",
+ "bt=90-al;\n",
+ "print('bt=',bt);\n",
+ "k=(math.tan(bt*math.pi/180))\n",
+ "\n",
+ "print('k=',k)\n",
+ "BC=BE/k;\n",
+ "C=275.5+BC;\n",
+ "print('chinage of c is',C,'meters')\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 18, pg38"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "measured length is 79.71623152917896 meters\n",
+ "true length is 79.61658623976749 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-1 page -37,38 pb-1\n",
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "\n",
+ "a=17.5;\n",
+ "b=19.3;\n",
+ "c=17.8;\n",
+ "d=13.6;\n",
+ "e=12.9;\n",
+ "\n",
+ "da=2.35;\n",
+ "db=4.20;\n",
+ "dc=2.95;\n",
+ "dd=1.65;\n",
+ "de=3.25;\n",
+ "\n",
+ "AB=math.sqrt((a*a)-(da*da));\n",
+ "BC=math.sqrt((b*b)-(db*db));\n",
+ "CD=math.sqrt((c*c)-(dc*dc));\n",
+ "DE=math.sqrt((d*d)-(dd*dd));\n",
+ "EF=math.sqrt((e*e)-(de*de));\n",
+ "\n",
+ "total=AB+BC+CD+DE+EF;\n",
+ "print('measured length is ',total,'meters');\n",
+ "\n",
+ "e=0.025;\n",
+ "l=20;\n",
+ "l1=l-e;\n",
+ "ml=total;\n",
+ "\n",
+ "tl=(l1/l)*ml;\n",
+ "\n",
+ "print('true length is ',tl,'meters');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 19, pg 38"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "measured length is 531.2592044589876 meters\n",
+ "true length is 532.587352470135 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-1 page -38 pb-2\n",
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "ab=550;\n",
+ "AB=ab*(math.cos(15*(math.pi/180)));\n",
+ "\n",
+ "l=20;\n",
+ "e=0.05;\n",
+ "l1=l+e;\n",
+ "ml=AB;\n",
+ "print('measured length is ',ml,'meters');\n",
+ "\n",
+ "tl=(l1/l)*ml;\n",
+ "\n",
+ "print('true length is ',tl,'meters');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 20, pg39"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 43,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "horizontal distance 1 is 275.74617084341827 meters\n",
+ "horizontal distance 2 is 278.61041325879694 meters\n",
+ "horizontal distance 3 is 279.8856909525744 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-1 page -38,39 pb-3\n",
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "ab=280;\n",
+ "\n",
+ "AB1=ab*(math.cos(10*(math.pi/180)));\n",
+ "\n",
+ "print('horizontal distance 1 is ',AB1,'meters');\n",
+ "\n",
+ "cosal=(10/(math.sqrt(101)));\n",
+ "\n",
+ "AB2=ab*cosal;\n",
+ "\n",
+ "print('horizontal distance 2 is ',AB2,'meters');\n",
+ "\n",
+ "bb=8;\n",
+ "AB3=math.sqrt(ab*ab-(bb*bb));\n",
+ "\n",
+ "print('horizontal distance 3 is ',AB3,'meters');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 21, pg40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "measured length is 101.35201880331583 meters\n",
+ "true horizontal distance is 101.26755878764641 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-1 page -39,40 pb-4\n",
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "a=28.7;\n",
+ "b=23.4;\n",
+ "c=20.9;\n",
+ "d=29.6;\n",
+ "\n",
+ "ag=5;\n",
+ "bg=7;\n",
+ "cg=10;\n",
+ "dg=12;\n",
+ "\n",
+ "AB=a*(math.cos(ag*(math.pi/180)));\n",
+ "\n",
+ "BC=b*(math.cos(bg*(math.pi/180)));\n",
+ "\n",
+ "CD=c*(math.cos(cg*(math.pi/180)));\n",
+ "\n",
+ "DE=d*(math.cos(dg*(math.pi/180)));\n",
+ "\n",
+ "total=AB+BC+CD+DE;\n",
+ "\n",
+ "ml=total;\n",
+ "\n",
+ "print('measured length is ',ml,'meters');\n",
+ "\n",
+ "l=30;\n",
+ "e=0.025;\n",
+ "l1=l-e;\n",
+ "\n",
+ "tl=(l1/l)*ml;\n",
+ "\n",
+ "print('true horizontal distance is ',tl,'meters');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 22, pg 40"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "theta1= 30.009552668941378\n",
+ "theta2= 106 degrees 32.534711618974654 minutes\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-1 page -40 pb-1\n",
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "\n",
+ "a=23;\n",
+ "b=16.5;\n",
+ "c=12;\n",
+ "\n",
+ "\n",
+ "t1=math.acos((a*a+b*b-(c*c))/(2*a*b));\n",
+ "t1=t1*(180/math.pi);\n",
+ "\n",
+ "print('theta1=',t1);\n",
+ "\n",
+ "t2=math.acos((c*c+b*b-(a*a))/(2*c*b));\n",
+ "t2=t2*(180/math.pi);\n",
+ "dg=int(t2)\n",
+ "mi=t2-int(t2)\n",
+ "mi=(mi*60);\n",
+ "print('theta2=',dg,'degrees',mi,'minutes');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 23, pg 41"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "theta1= 5 degrees 46.94403663966165 minutes\n",
+ "theta2= 165 degrees 26.421472313304548 minutes\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-1 page -40,41 pb-2\n",
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "\n",
+ "a=257;\n",
+ "b=156;\n",
+ "c=103;\n",
+ "\n",
+ "\n",
+ "t1=math.acos((a*a+b*b-(c*c))/(2*a*b));\n",
+ "t1=t1*(180/math.pi);\n",
+ "\n",
+ "dg1=int(t1)\n",
+ "mi1=t1-int(t1)\n",
+ "mi1=(mi1*60);\n",
+ "print('theta1=',dg1,'degrees',mi1,'minutes');\n",
+ "\n",
+ "\n",
+ "t2=math.acos((c*c+b*b-(a*a))/(2*c*b));\n",
+ "t2=t2*(180/math.pi);\n",
+ "dg=int(t2)\n",
+ "mi=t2-int(t2)\n",
+ "mi=(mi*60);\n",
+ "print('theta2=',dg,'degrees',mi,'minutes');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 24, pg 42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 47,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "RF is 0.025\n",
+ "length of scale is 15.000000000000002 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "#CH-1 PAGE-42 PB-1;\n",
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "\n",
+ "sc=100;\n",
+ "a=2.5;\n",
+ "m=6;\n",
+ "\n",
+ "RF=(a/sc);\n",
+ "\n",
+ "print('RF is ',RF);\n",
+ "\n",
+ "length=RF*m*sc;\n",
+ "\n",
+ "print('length of scale is ',length,'meters');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 25, pg 42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "RF= 0.0002\n",
+ "length of final scale is 700.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "#CH-1 PAGE-42,43 PB-2;\n",
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "\n",
+ "sc=100;\n",
+ "area=93750;\n",
+ "l=6.0;\n",
+ "b=6.25;\n",
+ "\n",
+ "cm2=(area)/(l*b);\n",
+ "\n",
+ "cm=math.sqrt(cm2);\n",
+ "RF=1/(sc*cm);\n",
+ "\n",
+ "print('RF=',RF);\n",
+ "\n",
+ "leng=14;\n",
+ "leng=leng*cm;\n",
+ "\n",
+ "print('length of final scale is ',leng);\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### Problem 26, pg 43"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 49,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "RF= 0.00025\n",
+ "length of scale is 600.0 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ "#CH-1 PAGE-43 PB-3;\n",
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "l=1.2;\n",
+ "al=30;\n",
+ "al=al/100;\n",
+ "sc=1000;\n",
+ "\n",
+ "\n",
+ "RF=(al)/(sc*l);\n",
+ "print('RF=',RF);\n",
+ "\n",
+ "\n",
+ "cm1=(1/RF)/(100);\n",
+ "\n",
+ "lsc=15;\n",
+ "cm15=lsc*cm1;\n",
+ "\n",
+ "print('length of scale is ',cm15,'meters');\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "### Problem 27, pg44"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 50,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "1cm= 30.0\n",
+ "RF= 0.03333333333333333\n",
+ "length of scale is 13.333333333333334 CENTIMETERS\n"
+ ]
+ }
+ ],
+ "source": [
+ "#CH-1 PAGE-44 PB-4;\n",
+ "\n",
+ "from __future__ import division\n",
+ "import math\n",
+ "\n",
+ "\n",
+ "sc=100;\n",
+ "hect=10000;\n",
+ "area=0.45*hect;\n",
+ "\n",
+ "cm1=(area)/5;\n",
+ "cm=math.sqrt(cm1);\n",
+ "\n",
+ "print('1cm=',cm);\n",
+ "RF=1/(cm);\n",
+ "print('RF=',RF);\n",
+ "\n",
+ "\n",
+ "maxl=400;\n",
+ "\n",
+ "los=(RF*maxl);\n",
+ "\n",
+ "print('length of scale is',los,'CENTIMETERS');\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}