summaryrefslogtreecommitdiff
path: root/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap10_Curves.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap10_Curves.ipynb')
-rw-r--r--SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap10_Curves.ipynb1023
1 files changed, 1023 insertions, 0 deletions
diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap10_Curves.ipynb b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap10_Curves.ipynb
new file mode 100644
index 00000000..b87fe16a
--- /dev/null
+++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap10_Curves.ipynb
@@ -0,0 +1,1023 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "# Chapter 10: Curves"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-10 page 379 pb-1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('Tangent length =', 58.45305445925609)\n",
+ "('Length long of cord=', 114.35142994976763)\n",
+ "('Length of curve =', 115.19173063162576)\n",
+ "('chainage of commencement =', 1262.046945540744)\n",
+ "('chainage of tangency =', 1377.2386761723697)\n",
+ "('apex distance =', 6.143663587883047)\n",
+ "('versed sine of curve is', 6.009409798203436)\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-10 page 379 pb-1\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "r=275;\n",
+ "t=24;\n",
+ "l=1320.5;\n",
+ "\n",
+ "tl=r*math.tan((t/2)*(math.pi/180));\n",
+ "print('Tangent length =',tl);\n",
+ "llc=2*r*math.sin((t/2)*(math.pi/180));\n",
+ "print('Length long of cord=',llc);\n",
+ "loc=(math.pi*r*t/180);\n",
+ "print('Length of curve =',loc)\n",
+ "coc=l-tl;\n",
+ "ct=coc+loc;\n",
+ "print('chainage of commencement =',coc);\n",
+ "print('chainage of tangency =',ct);\n",
+ "k=math.cos((t/2)*math.pi/180);\n",
+ "ad=r*((1/k)-1);\n",
+ "print('apex distance =',ad)\n",
+ "k1=math.cos((t/2)*(math.pi/180))\n",
+ "vsc=r*(1-k1);\n",
+ "print('versed sine of curve is',vsc);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-10 page 379,380 pb-2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('radius of curve ', 573.0)\n",
+ "('Tangent length =', 153.5348872630333)\n",
+ "('Length of curve =', 300.02209841782525)\n",
+ "('Length long of cord=', 296.60662568748876)\n",
+ "('chainage of commencement =', 2606.4651127369666)\n",
+ "('chainage of tangency =', 2906.487211154792)\n",
+ "('length of each half =', 148.30331284374438)\n",
+ "('O30=', 18.738622298863106, 'O60=', 16.374481794326243, 'O90=', 12.412299602376265, 'O120=', 6.81817453294525, 'O148.3=', 0.0)\n"
+ ]
+ }
+ ],
+ "source": [
+ "#ch-10 page 379,380 pb-2\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "ac=45.5;cb=75.5;\n",
+ "#a\n",
+ "\n",
+ "t=cb-ac;\n",
+ "l1=1719;\n",
+ "l=2760;\n",
+ "\n",
+ "#b\n",
+ "r=l1/3;\n",
+ "print('radius of curve ',r);\n",
+ "\n",
+ "#c\n",
+ "tl=r*math.tan((t/2)*(math.pi/180));\n",
+ "print('Tangent length =',tl);\n",
+ "#d\n",
+ "loc=(math.pi*r*t/180);\n",
+ "print('Length of curve =',loc)\n",
+ "#e\n",
+ "llc=2*r*math.sin((t/2)*(math.pi/180));\n",
+ "print('Length long of cord=',llc);\n",
+ "\n",
+ "#f,g\n",
+ "coc=l-tl;\n",
+ "ct=coc+loc;\n",
+ "print('chainage of commencement =',coc);\n",
+ "print('chainage of tangency =',ct);\n",
+ "\n",
+ "#h\n",
+ "\n",
+ "half=0.5*llc;\n",
+ "print('length of each half =',half);\n",
+ "\n",
+ "ini=30;\n",
+ "\n",
+ "k=math.sqrt(r*r-(half*half));\n",
+ "o=r-k\n",
+ "k1=r-o;\n",
+ "O30=(math.sqrt(r*r-(ini*ini)))-k1;\n",
+ "O60=(math.sqrt(r*r-(2*ini*2*ini)))-k1;\n",
+ " \n",
+ "O90=(math.sqrt(r*r-(3*ini*3*ini)))-k1;\n",
+ "O120=(math.sqrt(r*r-(4*ini*4*ini)))-k1;\n",
+ "Oh=(math.sqrt(r*r-(half*half)))-k1;\n",
+ "\n",
+ "print('O30=',O30,'O60=',O60,'O90=',O90,'O120=',O120,'O148.3=',Oh);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "### ch-10 page 381 pb-3"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('Tangent length =', 150.2288093231531)\n",
+ "('Length of curve =', 278.55454861829503)\n",
+ "('chainage of T1=', 360.00119067684693)\n",
+ "('chainage of T2=', 638.555739295142)\n",
+ "('chainage covered=', 630.0011906768469)\n",
+ "('Length of final sub cord=', 8.55454861829503)\n",
+ "('first ofset=', 1.5)\n",
+ "('second ofset=', 3.0)\n",
+ "('tenth ofset=', 0.5496946010193738)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "a=126.8;\n",
+ "t=180-a;\n",
+ "r=300;\n",
+ "#b\n",
+ "tl=r*math.tan((t/2)*(math.pi/180));\n",
+ "print('Tangent length =',tl);\n",
+ "\n",
+ "#c\n",
+ "loc=(math.pi*r*t/180);\n",
+ "print('Length of curve =',loc)\n",
+ "\n",
+ "#d\n",
+ "l=510.23;\n",
+ "ct1=l-tl;\n",
+ "ct2=ct1+loc;\n",
+ "\n",
+ "print('chainage of T1=',ct1);\n",
+ "print('chainage of T2=',ct2);\n",
+ "\n",
+ "#f\n",
+ "n=9;\n",
+ "b=30;\n",
+ "cc=ct1+270;\n",
+ "lfsc=ct2-cc;\n",
+ "print('chainage covered=',cc);\n",
+ "print('Length of final sub cord=',lfsc);\n",
+ "\n",
+ "O1=(b*b)/(2*r);\n",
+ "O2=(b*b)/r;\n",
+ "\n",
+ "O10=(lfsc*(b+lfsc))/(2*r);\n",
+ "\n",
+ "print('first ofset=',O1);\n",
+ "print('second ofset=',O2);\n",
+ "print('tenth ofset=',O10);\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-10 page 382 pb-4"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(165.95962740164575, 158.58327092428829)\n",
+ "('Radius R=', 143.72525333242524)\n",
+ "('Tangent length BT1=', 82.97981370082289)\n",
+ "('Tangent length CT1=', 67.02018629917711)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "ab=30;bc=90;cd=140;\n",
+ "l1=250;l2=150;l3=325;\n",
+ "\n",
+ "abc=210-bc;\n",
+ "t1=0.5*abc;\n",
+ "bcd=270-cd;\n",
+ "t2=0.5*bcd;\n",
+ "t3=180-(t1+t2);\n",
+ "\n",
+ "\n",
+ "k=(math.sin(t2*(math.pi/180)))/(math.sin(t3*(math.pi/180)));\n",
+ "OB=l2*k;\n",
+ "k1=(math.sin(t1*(math.pi/180)))/(math.sin(t3*(math.pi/180)));\n",
+ "OC=l2*k1;\n",
+ "print(OB,OC);\n",
+ "R=OB*(math.sin(t1*(math.pi/180)));\n",
+ "print('Radius R=',R);\n",
+ "\n",
+ "BT1=OB*(math.cos(t1*(math.pi/180)));\n",
+ "CT1=OC*(math.cos(t2*(math.pi/180)));\n",
+ "\n",
+ "print('Tangent length BT1=',BT1);\n",
+ "print('Tangent length CT1=',CT1);\n",
+ "\n",
+ "\n",
+ " \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-10 page 383 pb-5"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('R1=', 368.61561236693893)\n",
+ "('length of arc T1T2=', 209.43951023931953)\n",
+ "('length of arc T2T3=', 386.0133666034928)\n",
+ "('chainage of T1=', 792.8203230275509)\n",
+ "('chainage of T3=', 1388.2731998703632)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "r=400;\n",
+ "t1=15;t2=30;t3=60;\n",
+ "ct=900;\n",
+ "l=320;\n",
+ "BT2=r*(math.tan((t1)*math.pi/180));\n",
+ "CT2=l-BT2;\n",
+ "\n",
+ "r1=(CT2)/(math.tan((t2)*math.pi/180));\n",
+ "\n",
+ "print('R1=',r1);\n",
+ "t1t2=(math.pi*r*t2)/(180);\n",
+ "\n",
+ "t2t3=(math.pi*r1*t3)/(180);\n",
+ "\n",
+ "print('length of arc T1T2=',t1t2);\n",
+ "print('length of arc T2T3=',t2t3);\n",
+ "\n",
+ "\n",
+ "ct1=ct-BT2;\n",
+ "ct3=ct1+t1t2+t2t3;\n",
+ "\n",
+ "print('chainage of T1=',ct1);\n",
+ "print('chainage of T3=',ct3);\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-10 page 384 pb-6"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('R2=', 1092.8203230275515)\n",
+ "('length of arc T1T2=', 209.43951023931953)\n",
+ "('length of arc T2T3=', 572.1993830861634)\n",
+ "('chainage of point of reverse curvature =', 1709.4395102393196)\n",
+ "('chainage of finishing point T3=', 2281.638893325483)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "r1=400;\n",
+ "t1=30;d=200;\n",
+ "ct1=1500;\n",
+ "k=1-(math.cos(t1*(math.pi/180)))\n",
+ "T1G=r1*(k);\n",
+ "\n",
+ "r2=(d-T1G)/k;\n",
+ "print('R2=',r2);\n",
+ "\n",
+ "t1t2=(math.pi*r1*t1)/180;\n",
+ "t2t3=(math.pi*r2*t1)/180;\n",
+ "print('length of arc T1T2=',t1t2);\n",
+ "print('length of arc T2T3=',t2t3);\n",
+ "\n",
+ "ct2=ct1+t1t2;\n",
+ "ct3=ct2+t2t3;\n",
+ "\n",
+ "print('chainage of point of reverse curvature =',ct2);\n",
+ "print('chainage of finishing point T3=',ct3);\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-10 page 385 pb-7"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('EF=', 228.7451827250347)\n",
+ "('chainage of T1=', 701.0877129159065)\n",
+ "('chainage of D=', 1015.2469782748858)\n",
+ "('chainage of T2', 1137.4200259144889)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "a1=135;a2=145;\n",
+ "t1=180-a1;\n",
+ "t2=180-a2;\n",
+ "t3=180-(t1+t2);\n",
+ "r1=400;r2=200;\n",
+ "ct=1000;\n",
+ "\n",
+ "ED=r1*(math.tan((t1/2)*(math.pi/180)));\n",
+ "\n",
+ "FD=r2*(math.tan((t2/2)*(math.pi/180)));\n",
+ "\n",
+ "EF=ED+FD;\n",
+ "\n",
+ "print('EF=',EF);\n",
+ "\n",
+ "BE=EF*(math.sin(t2*(math.pi/180)))/(math.sin(t3*(math.pi/180)));\n",
+ "\n",
+ "BF=EF*(math.sin(t1*(math.pi/180)))/(math.sin(t3*(math.pi/180)))\n",
+ "\n",
+ "\n",
+ "ct1=ct-(BE+ED);\n",
+ "\n",
+ "cd=ct1+((math.pi*r1*t1)/(180));\n",
+ "\n",
+ "ct2=cd+((math.pi*r2*t2)/(180));\n",
+ "\n",
+ "print('chainage of T1=',ct1);\n",
+ "print('chainage of D=',cd);\n",
+ "print('chainage of T2',ct2);\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-10 page 386 pb-8"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('Radius R=', 272.7765415715475)\n",
+ "('angle Theta=', 109.0)\n",
+ "('curve length T1D=', 145.2058875651141)\n",
+ "('curve length DT2=', 192.814375291381)\n",
+ "('chainage of T1=', 1305.430383812096)\n",
+ "('chainage of T2=', 1643.4506466685912)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "t1=30.5;\n",
+ "t2=40.5;\n",
+ "EF=175;\n",
+ "cb=1500;\n",
+ "\n",
+ "k1=math.tan((t1/2)*(math.pi/180));\n",
+ "k2=math.tan((t2/2)*(math.pi/180));\n",
+ "\n",
+ "r=EF/(k1+k2);\n",
+ "print('Radius R=',r);\n",
+ "\n",
+ "et1=r*k1;\n",
+ "ft2=r*k2;\n",
+ "\n",
+ "t3=180-(t1+t2);\n",
+ "print('angle Theta=',t3);\n",
+ "k3=(math.sin(t2*(math.pi/180)))/(math.sin(t3*(math.pi/180)));\n",
+ "k4=(math.sin(t1*(math.pi/180)))/(math.sin(t3*(math.pi/180)));\n",
+ "\n",
+ "be=EF*k3;\n",
+ "bf=EF*k4;\n",
+ "\n",
+ "t1d=(math.pi*r*t1)/180;\n",
+ "dt2=(math.pi*r*t2)/180;\n",
+ "\n",
+ "print('curve length T1D=',t1d);\n",
+ "print('curve length DT2=',dt2);\n",
+ "\n",
+ "ct1=cb-(be+et1);\n",
+ "\n",
+ "ct2=ct1+t1d+dt2;\n",
+ "print('chainage of T1=',ct1);\n",
+ "print('chainage of T2=',ct2)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-10 page 387 pb-9"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('theta 3=', 10.649036741314365)\n",
+ "('Radius R=', 829.124128893828)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "t1=80-70;\n",
+ "l=50;\n",
+ "k=1/(math.cos(20*(math.pi/180)));\n",
+ "\n",
+ "k1=k*(math.sin(t1*(math.pi/180)));\n",
+ "t3=math.asin(k1);\n",
+ "t3=t3*(180/(math.pi));\n",
+ "print('theta 3=',t3);\n",
+ "\n",
+ "t3=180-t3;\n",
+ "t2=180-(t3+t1);\n",
+ "\n",
+ "r=l*(math.sin(t1*(math.pi/180)))/(math.sin(0.6*(math.pi/180)));\n",
+ "print('Radius R=',r);\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-10 page 388 pb-10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('radius of circular curvature=', 402.713280728911)\n",
+ "('length of transistion curve =', 90.83333333333334)\n",
+ "('spiral angle=', 6.461627773592511)\n",
+ "('central angle=', 47.07674445281498)\n",
+ "('length of circular curve =', 330.88702808033025)\n",
+ "('shift of curve =', 0.8536568115234379)\n",
+ "('tangent length =', 278.4161466916694)\n",
+ "('chainage of 1st tangent point =', 871.5838533083306)\n",
+ "('chainage of 2nd tangent point =', 1384.1375480553274)\n",
+ "('chainage of 1st junction point =', 962.417186641664)\n",
+ "('chainage of 2nd junction point =', 1293.3042147219942)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "sp=80;\n",
+ "v=(sp*1000)/(60*60);\n",
+ "cr=(1/8);\n",
+ "g=9.81;\n",
+ "a=60;\n",
+ "\n",
+ "#a\n",
+ "\n",
+ "r=(v*v)/(g*cr);\n",
+ "print('radius of circular curvature=',r);\n",
+ "\n",
+ "#b\n",
+ "k=0.3;\n",
+ "l=(v*v*v)/(k*r);\n",
+ "print('length of transistion curve =',l);\n",
+ "\n",
+ "sa=l/(2*r);\n",
+ "sa=sa*(180/(math.pi));\n",
+ "print('spiral angle=',sa);\n",
+ "ca=a-(2*sa);\n",
+ "print('central angle=',ca);\n",
+ "\n",
+ "lcc=(math.pi*r*ca)/180;\n",
+ "print('length of circular curve =',lcc);\n",
+ "\n",
+ "s=(l*l)/(24*r);\n",
+ "print('shift of curve =',s);\n",
+ "ag=a/2;\n",
+ "t=(r+s)*(math.tan(ag*(math.pi/180)))+(l/2);\n",
+ "print('tangent length =',t);\n",
+ "#c\n",
+ "cip=1150;\n",
+ "c1t=cip-t;\n",
+ "c1j=c1t+l;\n",
+ "c2j=c1j+lcc;\n",
+ "c2t=c2j+l;\n",
+ "\n",
+ "print('chainage of 1st tangent point =',c1t);\n",
+ "print('chainage of 2nd tangent point =',c2t);\n",
+ "\n",
+ "print('chainage of 1st junction point =',c1j);\n",
+ "print('chainage of 2nd junction point =',c2j);\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-10 page 389 pb-11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 11,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('radius =', 343.8)\n",
+ "('tangent length =', 108.39972361659453)\n",
+ "('curve length =', 210.01546889247766)\n",
+ "('chainage of 1st point =', 1471.6002763834056)\n",
+ "('chainage of 2nd point =', 1681.6157452758832)\n",
+ "('length of final sub chord =', 8.399723616594429)\n",
+ "('chainage covered=', 1660)\n",
+ "('length of final sub chord', 21.615745275883228)\n",
+ "('deflection angle for initial sub chord =', 43.52844633883164, 'min')\n",
+ "('deflection angle for full chord', 2.5910642019719075, 'min')\n",
+ "('deflection angle for final sub chord', 1.8669261261094798, 'min')\n",
+ "('total deflection angle=', 17.5)\n",
+ "('apex distance =', 16.6843132234107)\n",
+ "('versed sine of curve =', 15.91211233275958)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "a=145;\n",
+ "cpi=1580;\n",
+ "de=5;\n",
+ "pi=30;\n",
+ "lct=0.00555;\n",
+ "\n",
+ "da=180-a;\n",
+ "\n",
+ "r=(1719)/5;\n",
+ "\n",
+ "print('radius =',r);\n",
+ "\n",
+ "#a\n",
+ "\n",
+ "tl=r*(math.tan((da/2)*(math.pi/180)));\n",
+ "print('tangent length =',tl);\n",
+ "\n",
+ "#b\n",
+ "\n",
+ "cl=(math.pi*r*da)/180;\n",
+ "print('curve length =',cl);\n",
+ "\n",
+ "#c\n",
+ "\n",
+ "c1t=cpi-tl;\n",
+ "print('chainage of 1st point =',c1t);\n",
+ "\n",
+ "#d\n",
+ "c2t=c1t+cl;\n",
+ "print('chainage of 2nd point =',c2t);\n",
+ "\n",
+ "#e\n",
+ "lisc=1480-c1t;\n",
+ "print('length of final sub chord =',lisc);\n",
+ "#f\n",
+ "n=6;\n",
+ "ini=30;\n",
+ "cc=1480+(n*30);\n",
+ "print('chainage covered=',cc);\n",
+ "#g\n",
+ "lfsc=c2t-cc;\n",
+ "print('length of final sub chord',lfsc);\n",
+ "#h\n",
+ "dasc=((c2t+100)*lisc)/(r);\n",
+ "print('deflection angle for initial sub chord =',dasc,'min');\n",
+ "#i\n",
+ "dafc=((c2t+100)*pi)/r;\n",
+ "print('deflection angle for full chord',dafc/60,'min');\n",
+ "#j\n",
+ "dafsc=((c2t+100)*lfsc)/r;\n",
+ "print('deflection angle for final sub chord',dafsc/60,'min');\n",
+ "\n",
+ "#k\n",
+ "\n",
+ "tda=da/2;\n",
+ "print('total deflection angle=',tda);\n",
+ "\n",
+ "\n",
+ "#l\n",
+ "k=1/(math.cos(tda*(math.pi/180)));\n",
+ "ad=r*(k-1);\n",
+ "print('apex distance =',ad);\n",
+ "\n",
+ "vs=r*(1-(math.cos(tda*(math.pi/180))));\n",
+ "print('versed sine of curve =',vs);\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-10 page 391 pb-1"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('length of vertical curve =', 240.0)\n",
+ "('chainage of A', 430.0)\n",
+ "('chainage of C', 670.0)\n",
+ "('Rl of A', 374.9)\n",
+ "('Rl of C', 374.66)\n",
+ "('Rl of E', 374.78)\n",
+ "('Rl of F', 375.14)\n",
+ "('tangent correction at the apex =', 0.36000000000001364)\n",
+ "('tangent correction at 1st,2nd,3rd,4th,5th,6th, points', 0.01, 0.04, 0.09, 0.16, 0.25, 0.36)\n",
+ "RL of the points on grade\n",
+ "(375.0, 375.1, 375.20000000000005, 375.30000000000007, 375.4000000000001, 375.5000000000001)\n",
+ "RL of the points on curve\n",
+ "(374.99, 375.06, 375.11000000000007, 375.14000000000004, 375.1500000000001, 375.1400000000001)\n",
+ "Rls of points on the grade right side\n",
+ "(375.36, 375.22, 375.08000000000004, 374.94000000000005, 374.80000000000007)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "pi=20;\n",
+ "cb=550;\n",
+ "rlb=375.5;\n",
+ "g1=0.5;\n",
+ "g2=-0.7;\n",
+ "#a\n",
+ "vc=((g1-g2)*20)/0.1;\n",
+ "\n",
+ "print('length of vertical curve =',vc);\n",
+ "\n",
+ "#b,c\n",
+ "\n",
+ "ca=cb-(vc/2);\n",
+ "cc=ca+vc;\n",
+ "print('chainage of A',ca);\n",
+ "print('chainage of C',cc);\n",
+ "\n",
+ "#d,e,f,g\n",
+ "\n",
+ "rla=rlb-((g1*0.5*vc)/100);\n",
+ "rlc=rlb-((-g2*0.5*vc)/100);\n",
+ "rle=0.5*(rla+rlc);\n",
+ "rlf=0.5*(rlb+rle);\n",
+ "\n",
+ "print('Rl of A',rla);\n",
+ "print('Rl of C',rlc);\n",
+ "print('Rl of E',rle);\n",
+ "print('Rl of F',rlf);\n",
+ "#h\n",
+ "tc=rlb-rlf;\n",
+ "print('tangent correction at the apex =',tc);\n",
+ "\n",
+ "#i\n",
+ "tc1=((g1-g2)*(pi*pi))/(400*0.5*vc);\n",
+ "tc2=((g1-g2)*(2*pi*2*pi))/(400*0.5*vc);\n",
+ "tc3=((g1-g2)*(3*pi*3*pi))/(400*0.5*vc);\n",
+ "tc4=((g1-g2)*(4*pi*4*pi))/(400*0.5*vc);\n",
+ "tc5=((g1-g2)*(5*pi*5*pi))/(400*0.5*vc);\n",
+ "tc6=((g1-g2)*(6*pi*6*pi))/(400*0.5*vc);\n",
+ "print('tangent correction at 1st,2nd,3rd,4th,5th,6th, points',tc1,tc2,tc3,tc4,tc5,tc6);\n",
+ "\n",
+ "#j\n",
+ "rp=(g1*pi)/100;\n",
+ "\n",
+ "rl1=rla+rp;\n",
+ "rl2=rl1+rp;\n",
+ "rl3=rl2+rp;\n",
+ "rl4=rl3+rp;\n",
+ "rl5=rl4+rp;\n",
+ "rl6=rl5+rp;\n",
+ "print('RL of the points on grade');\n",
+ "print(rl1,rl2,rl3,rl4,rl5,rl6)\n",
+ "\n",
+ "#k\n",
+ "rlc1=rl1-tc1;\n",
+ "rlc2=rl2-(tc2);\n",
+ "rlc3=rl3-(tc3);\n",
+ "rlc4=rl4-(tc4);\n",
+ "rlc5=rl5-(tc5);\n",
+ "rlc6=rl6-(tc6);\n",
+ "\n",
+ "print('RL of the points on curve');\n",
+ "print(rlc1,rlc2,rlc3,rlc4,rlc5,rlc6);\n",
+ "\n",
+ "#l\n",
+ "\n",
+ "fp=0.14;\n",
+ "\n",
+ "rlg5=rlb-fp;\n",
+ "rlg4=rlg5-fp;\n",
+ "rlg3=rlg4-fp;\n",
+ "rlg2=rlg3-fp;\n",
+ "rlg1=rlg2-fp;\n",
+ "\n",
+ "print('Rls of points on the grade right side');\n",
+ "print(rlg5,rlg4,rlg3,rlg2,rlg1);\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "\n",
+ "### ch-10 page 393 pb-2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "('length of vertical curve', 300.0)\n",
+ "('RL of A=', 252.0)\n",
+ "('RL of C=', 251.25)\n",
+ "('RL of E=', 251.625)\n",
+ "('RL of F=', 251.0625)\n",
+ "RL on the grade on the side AB \n",
+ "(251.7, 251.39999999999998, 251.09999999999997, 250.79999999999995)\n",
+ "RL on grade on side BC\n",
+ "(250.65, 250.8, 250.95000000000002, 251.10000000000002)\n",
+ "tangent correction from expression \n",
+ "(-0.0225, -0.09, -0.2025, -0.36)\n"
+ ]
+ }
+ ],
+ "source": [
+ "\n",
+ "from __future__ import division\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "cb=400;\n",
+ "rlb=250.5;\n",
+ "pi=30;\n",
+ "g1=-1.0;\n",
+ "g2=0.5;\n",
+ "g=0.1;\n",
+ "ga=20;\n",
+ "#a\n",
+ "vc=(g1-g2)/g;\n",
+ "vc=-vc*ga;\n",
+ "print('length of vertical curve',vc);\n",
+ "\n",
+ "#b,c\n",
+ "ca=cb-(0.5*vc);\n",
+ "cc=ca+vc;\n",
+ "\n",
+ "#d,e,f,g\n",
+ "\n",
+ "rla=rlb+((0.5*vc)/100);\n",
+ "\n",
+ "rlc=rlb+((0.5*0.5*vc)/100);\n",
+ "\n",
+ "rle=0.5*(rla+rlc);\n",
+ "\n",
+ "rlf=0.5*(rle+rlb);\n",
+ "\n",
+ "print('RL of A=',rla);\n",
+ "print('RL of C=',rlc);\n",
+ "print('RL of E=',rle);\n",
+ "print('RL of F=',rlf);\n",
+ "\n",
+ "#h\n",
+ "fp=pi/100;\n",
+ "\n",
+ "rl1=rla-fp;\n",
+ "rl2=rl1-fp;\n",
+ "rl3=rl2-fp;\n",
+ "rl4=rl3-fp;\n",
+ "print('RL on the grade on the side AB ');\n",
+ "print(rl1,rl2,rl3,rl4);\n",
+ "\n",
+ "#i\n",
+ "\n",
+ "rp=(0.5*pi)/100;\n",
+ "\n",
+ "rls4=rlb+rp\n",
+ "rls3=rls4+rp\n",
+ "rls2=rls3+rp\n",
+ "rls1=rls2+rp\n",
+ "\n",
+ "print('RL on grade on side BC');\n",
+ "print(rls4,rls3,rls2,rls1);\n",
+ "\n",
+ "#j\n",
+ "\n",
+ "y1=((g1-g2)*(pi*pi))/(cb*0.5*vc);\n",
+ "y2=((g1-g2)*(2*pi*2*pi))/(cb*0.5*vc);\n",
+ "y3=((g1-g2)*(3*pi*3*pi))/(cb*0.5*vc);\n",
+ "y4=((g1-g2)*(4*pi*4*pi))/(cb*0.5*vc);\n",
+ "\n",
+ "print('tangent correction from expression ');\n",
+ "print(y1,y2,y3,y4);\n",
+ "\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}