diff options
author | Trupti Kini | 2016-06-26 23:30:28 +0600 |
---|---|---|
committer | Trupti Kini | 2016-06-26 23:30:28 +0600 |
commit | c08d3fdc7094fa6c300dab5feaad8ec76573fe92 (patch) | |
tree | 9b1a0de672b3069626634fcf6c7f51813cdec881 /SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap10_Curves.ipynb | |
parent | 2c007afb09c2620205730ed5e7c57d97487e420a (diff) | |
download | Python-Textbook-Companions-c08d3fdc7094fa6c300dab5feaad8ec76573fe92.tar.gz Python-Textbook-Companions-c08d3fdc7094fa6c300dab5feaad8ec76573fe92.tar.bz2 Python-Textbook-Companions-c08d3fdc7094fa6c300dab5feaad8ec76573fe92.zip |
Added(A)/Deleted(D) following books
A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap10_Curves.ipynb
A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap1_Introduction.ipynb
A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap2_Chain-Surveying.ipynb
A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap3_Compass-Traversing.ipynb
A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap5_Levelling.ipynb
A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap7_Computation-of-Area.ipynb
A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap8_Computation-of-Volume.ipynb
A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap9_Theodolite-Traversing.ipynb
A SURVYNG_AND_LEVELLING__by_N.N.BASAK/chapter11_Tacheometric-Traversing.ipynb
A SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/13509393_889732434488692_1124174787_o.png
A SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/13517827_889732431155359_775192974_o.png
A SURVYNG_AND_LEVELLING__by_N.N.BASAK/screenshots/13549112_889732614488674_584774303_o.png
Diffstat (limited to 'SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap10_Curves.ipynb')
-rw-r--r-- | SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap10_Curves.ipynb | 1023 |
1 files changed, 1023 insertions, 0 deletions
diff --git a/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap10_Curves.ipynb b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap10_Curves.ipynb new file mode 100644 index 00000000..b87fe16a --- /dev/null +++ b/SURVYNG_AND_LEVELLING__by_N.N.BASAK/chap10_Curves.ipynb @@ -0,0 +1,1023 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "\n", + "# Chapter 10: Curves" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-10 page 379 pb-1" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('Tangent length =', 58.45305445925609)\n", + "('Length long of cord=', 114.35142994976763)\n", + "('Length of curve =', 115.19173063162576)\n", + "('chainage of commencement =', 1262.046945540744)\n", + "('chainage of tangency =', 1377.2386761723697)\n", + "('apex distance =', 6.143663587883047)\n", + "('versed sine of curve is', 6.009409798203436)\n" + ] + } + ], + "source": [ + "#ch-10 page 379 pb-1\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "r=275;\n", + "t=24;\n", + "l=1320.5;\n", + "\n", + "tl=r*math.tan((t/2)*(math.pi/180));\n", + "print('Tangent length =',tl);\n", + "llc=2*r*math.sin((t/2)*(math.pi/180));\n", + "print('Length long of cord=',llc);\n", + "loc=(math.pi*r*t/180);\n", + "print('Length of curve =',loc)\n", + "coc=l-tl;\n", + "ct=coc+loc;\n", + "print('chainage of commencement =',coc);\n", + "print('chainage of tangency =',ct);\n", + "k=math.cos((t/2)*math.pi/180);\n", + "ad=r*((1/k)-1);\n", + "print('apex distance =',ad)\n", + "k1=math.cos((t/2)*(math.pi/180))\n", + "vsc=r*(1-k1);\n", + "print('versed sine of curve is',vsc);\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-10 page 379,380 pb-2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('radius of curve ', 573.0)\n", + "('Tangent length =', 153.5348872630333)\n", + "('Length of curve =', 300.02209841782525)\n", + "('Length long of cord=', 296.60662568748876)\n", + "('chainage of commencement =', 2606.4651127369666)\n", + "('chainage of tangency =', 2906.487211154792)\n", + "('length of each half =', 148.30331284374438)\n", + "('O30=', 18.738622298863106, 'O60=', 16.374481794326243, 'O90=', 12.412299602376265, 'O120=', 6.81817453294525, 'O148.3=', 0.0)\n" + ] + } + ], + "source": [ + "#ch-10 page 379,380 pb-2\n", + "from __future__ import division\n", + "\n", + "import math\n", + "ac=45.5;cb=75.5;\n", + "#a\n", + "\n", + "t=cb-ac;\n", + "l1=1719;\n", + "l=2760;\n", + "\n", + "#b\n", + "r=l1/3;\n", + "print('radius of curve ',r);\n", + "\n", + "#c\n", + "tl=r*math.tan((t/2)*(math.pi/180));\n", + "print('Tangent length =',tl);\n", + "#d\n", + "loc=(math.pi*r*t/180);\n", + "print('Length of curve =',loc)\n", + "#e\n", + "llc=2*r*math.sin((t/2)*(math.pi/180));\n", + "print('Length long of cord=',llc);\n", + "\n", + "#f,g\n", + "coc=l-tl;\n", + "ct=coc+loc;\n", + "print('chainage of commencement =',coc);\n", + "print('chainage of tangency =',ct);\n", + "\n", + "#h\n", + "\n", + "half=0.5*llc;\n", + "print('length of each half =',half);\n", + "\n", + "ini=30;\n", + "\n", + "k=math.sqrt(r*r-(half*half));\n", + "o=r-k\n", + "k1=r-o;\n", + "O30=(math.sqrt(r*r-(ini*ini)))-k1;\n", + "O60=(math.sqrt(r*r-(2*ini*2*ini)))-k1;\n", + " \n", + "O90=(math.sqrt(r*r-(3*ini*3*ini)))-k1;\n", + "O120=(math.sqrt(r*r-(4*ini*4*ini)))-k1;\n", + "Oh=(math.sqrt(r*r-(half*half)))-k1;\n", + "\n", + "print('O30=',O30,'O60=',O60,'O90=',O90,'O120=',O120,'O148.3=',Oh);\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### ch-10 page 381 pb-3" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('Tangent length =', 150.2288093231531)\n", + "('Length of curve =', 278.55454861829503)\n", + "('chainage of T1=', 360.00119067684693)\n", + "('chainage of T2=', 638.555739295142)\n", + "('chainage covered=', 630.0011906768469)\n", + "('Length of final sub cord=', 8.55454861829503)\n", + "('first ofset=', 1.5)\n", + "('second ofset=', 3.0)\n", + "('tenth ofset=', 0.5496946010193738)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "a=126.8;\n", + "t=180-a;\n", + "r=300;\n", + "#b\n", + "tl=r*math.tan((t/2)*(math.pi/180));\n", + "print('Tangent length =',tl);\n", + "\n", + "#c\n", + "loc=(math.pi*r*t/180);\n", + "print('Length of curve =',loc)\n", + "\n", + "#d\n", + "l=510.23;\n", + "ct1=l-tl;\n", + "ct2=ct1+loc;\n", + "\n", + "print('chainage of T1=',ct1);\n", + "print('chainage of T2=',ct2);\n", + "\n", + "#f\n", + "n=9;\n", + "b=30;\n", + "cc=ct1+270;\n", + "lfsc=ct2-cc;\n", + "print('chainage covered=',cc);\n", + "print('Length of final sub cord=',lfsc);\n", + "\n", + "O1=(b*b)/(2*r);\n", + "O2=(b*b)/r;\n", + "\n", + "O10=(lfsc*(b+lfsc))/(2*r);\n", + "\n", + "print('first ofset=',O1);\n", + "print('second ofset=',O2);\n", + "print('tenth ofset=',O10);\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-10 page 382 pb-4" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(165.95962740164575, 158.58327092428829)\n", + "('Radius R=', 143.72525333242524)\n", + "('Tangent length BT1=', 82.97981370082289)\n", + "('Tangent length CT1=', 67.02018629917711)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "ab=30;bc=90;cd=140;\n", + "l1=250;l2=150;l3=325;\n", + "\n", + "abc=210-bc;\n", + "t1=0.5*abc;\n", + "bcd=270-cd;\n", + "t2=0.5*bcd;\n", + "t3=180-(t1+t2);\n", + "\n", + "\n", + "k=(math.sin(t2*(math.pi/180)))/(math.sin(t3*(math.pi/180)));\n", + "OB=l2*k;\n", + "k1=(math.sin(t1*(math.pi/180)))/(math.sin(t3*(math.pi/180)));\n", + "OC=l2*k1;\n", + "print(OB,OC);\n", + "R=OB*(math.sin(t1*(math.pi/180)));\n", + "print('Radius R=',R);\n", + "\n", + "BT1=OB*(math.cos(t1*(math.pi/180)));\n", + "CT1=OC*(math.cos(t2*(math.pi/180)));\n", + "\n", + "print('Tangent length BT1=',BT1);\n", + "print('Tangent length CT1=',CT1);\n", + "\n", + "\n", + " \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-10 page 383 pb-5" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('R1=', 368.61561236693893)\n", + "('length of arc T1T2=', 209.43951023931953)\n", + "('length of arc T2T3=', 386.0133666034928)\n", + "('chainage of T1=', 792.8203230275509)\n", + "('chainage of T3=', 1388.2731998703632)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "r=400;\n", + "t1=15;t2=30;t3=60;\n", + "ct=900;\n", + "l=320;\n", + "BT2=r*(math.tan((t1)*math.pi/180));\n", + "CT2=l-BT2;\n", + "\n", + "r1=(CT2)/(math.tan((t2)*math.pi/180));\n", + "\n", + "print('R1=',r1);\n", + "t1t2=(math.pi*r*t2)/(180);\n", + "\n", + "t2t3=(math.pi*r1*t3)/(180);\n", + "\n", + "print('length of arc T1T2=',t1t2);\n", + "print('length of arc T2T3=',t2t3);\n", + "\n", + "\n", + "ct1=ct-BT2;\n", + "ct3=ct1+t1t2+t2t3;\n", + "\n", + "print('chainage of T1=',ct1);\n", + "print('chainage of T3=',ct3);\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-10 page 384 pb-6" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('R2=', 1092.8203230275515)\n", + "('length of arc T1T2=', 209.43951023931953)\n", + "('length of arc T2T3=', 572.1993830861634)\n", + "('chainage of point of reverse curvature =', 1709.4395102393196)\n", + "('chainage of finishing point T3=', 2281.638893325483)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "r1=400;\n", + "t1=30;d=200;\n", + "ct1=1500;\n", + "k=1-(math.cos(t1*(math.pi/180)))\n", + "T1G=r1*(k);\n", + "\n", + "r2=(d-T1G)/k;\n", + "print('R2=',r2);\n", + "\n", + "t1t2=(math.pi*r1*t1)/180;\n", + "t2t3=(math.pi*r2*t1)/180;\n", + "print('length of arc T1T2=',t1t2);\n", + "print('length of arc T2T3=',t2t3);\n", + "\n", + "ct2=ct1+t1t2;\n", + "ct3=ct2+t2t3;\n", + "\n", + "print('chainage of point of reverse curvature =',ct2);\n", + "print('chainage of finishing point T3=',ct3);\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-10 page 385 pb-7" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('EF=', 228.7451827250347)\n", + "('chainage of T1=', 701.0877129159065)\n", + "('chainage of D=', 1015.2469782748858)\n", + "('chainage of T2', 1137.4200259144889)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "a1=135;a2=145;\n", + "t1=180-a1;\n", + "t2=180-a2;\n", + "t3=180-(t1+t2);\n", + "r1=400;r2=200;\n", + "ct=1000;\n", + "\n", + "ED=r1*(math.tan((t1/2)*(math.pi/180)));\n", + "\n", + "FD=r2*(math.tan((t2/2)*(math.pi/180)));\n", + "\n", + "EF=ED+FD;\n", + "\n", + "print('EF=',EF);\n", + "\n", + "BE=EF*(math.sin(t2*(math.pi/180)))/(math.sin(t3*(math.pi/180)));\n", + "\n", + "BF=EF*(math.sin(t1*(math.pi/180)))/(math.sin(t3*(math.pi/180)))\n", + "\n", + "\n", + "ct1=ct-(BE+ED);\n", + "\n", + "cd=ct1+((math.pi*r1*t1)/(180));\n", + "\n", + "ct2=cd+((math.pi*r2*t2)/(180));\n", + "\n", + "print('chainage of T1=',ct1);\n", + "print('chainage of D=',cd);\n", + "print('chainage of T2',ct2);\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-10 page 386 pb-8" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('Radius R=', 272.7765415715475)\n", + "('angle Theta=', 109.0)\n", + "('curve length T1D=', 145.2058875651141)\n", + "('curve length DT2=', 192.814375291381)\n", + "('chainage of T1=', 1305.430383812096)\n", + "('chainage of T2=', 1643.4506466685912)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "t1=30.5;\n", + "t2=40.5;\n", + "EF=175;\n", + "cb=1500;\n", + "\n", + "k1=math.tan((t1/2)*(math.pi/180));\n", + "k2=math.tan((t2/2)*(math.pi/180));\n", + "\n", + "r=EF/(k1+k2);\n", + "print('Radius R=',r);\n", + "\n", + "et1=r*k1;\n", + "ft2=r*k2;\n", + "\n", + "t3=180-(t1+t2);\n", + "print('angle Theta=',t3);\n", + "k3=(math.sin(t2*(math.pi/180)))/(math.sin(t3*(math.pi/180)));\n", + "k4=(math.sin(t1*(math.pi/180)))/(math.sin(t3*(math.pi/180)));\n", + "\n", + "be=EF*k3;\n", + "bf=EF*k4;\n", + "\n", + "t1d=(math.pi*r*t1)/180;\n", + "dt2=(math.pi*r*t2)/180;\n", + "\n", + "print('curve length T1D=',t1d);\n", + "print('curve length DT2=',dt2);\n", + "\n", + "ct1=cb-(be+et1);\n", + "\n", + "ct2=ct1+t1d+dt2;\n", + "print('chainage of T1=',ct1);\n", + "print('chainage of T2=',ct2)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-10 page 387 pb-9" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('theta 3=', 10.649036741314365)\n", + "('Radius R=', 829.124128893828)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "t1=80-70;\n", + "l=50;\n", + "k=1/(math.cos(20*(math.pi/180)));\n", + "\n", + "k1=k*(math.sin(t1*(math.pi/180)));\n", + "t3=math.asin(k1);\n", + "t3=t3*(180/(math.pi));\n", + "print('theta 3=',t3);\n", + "\n", + "t3=180-t3;\n", + "t2=180-(t3+t1);\n", + "\n", + "r=l*(math.sin(t1*(math.pi/180)))/(math.sin(0.6*(math.pi/180)));\n", + "print('Radius R=',r);\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-10 page 388 pb-10" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('radius of circular curvature=', 402.713280728911)\n", + "('length of transistion curve =', 90.83333333333334)\n", + "('spiral angle=', 6.461627773592511)\n", + "('central angle=', 47.07674445281498)\n", + "('length of circular curve =', 330.88702808033025)\n", + "('shift of curve =', 0.8536568115234379)\n", + "('tangent length =', 278.4161466916694)\n", + "('chainage of 1st tangent point =', 871.5838533083306)\n", + "('chainage of 2nd tangent point =', 1384.1375480553274)\n", + "('chainage of 1st junction point =', 962.417186641664)\n", + "('chainage of 2nd junction point =', 1293.3042147219942)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "sp=80;\n", + "v=(sp*1000)/(60*60);\n", + "cr=(1/8);\n", + "g=9.81;\n", + "a=60;\n", + "\n", + "#a\n", + "\n", + "r=(v*v)/(g*cr);\n", + "print('radius of circular curvature=',r);\n", + "\n", + "#b\n", + "k=0.3;\n", + "l=(v*v*v)/(k*r);\n", + "print('length of transistion curve =',l);\n", + "\n", + "sa=l/(2*r);\n", + "sa=sa*(180/(math.pi));\n", + "print('spiral angle=',sa);\n", + "ca=a-(2*sa);\n", + "print('central angle=',ca);\n", + "\n", + "lcc=(math.pi*r*ca)/180;\n", + "print('length of circular curve =',lcc);\n", + "\n", + "s=(l*l)/(24*r);\n", + "print('shift of curve =',s);\n", + "ag=a/2;\n", + "t=(r+s)*(math.tan(ag*(math.pi/180)))+(l/2);\n", + "print('tangent length =',t);\n", + "#c\n", + "cip=1150;\n", + "c1t=cip-t;\n", + "c1j=c1t+l;\n", + "c2j=c1j+lcc;\n", + "c2t=c2j+l;\n", + "\n", + "print('chainage of 1st tangent point =',c1t);\n", + "print('chainage of 2nd tangent point =',c2t);\n", + "\n", + "print('chainage of 1st junction point =',c1j);\n", + "print('chainage of 2nd junction point =',c2j);\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-10 page 389 pb-11" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('radius =', 343.8)\n", + "('tangent length =', 108.39972361659453)\n", + "('curve length =', 210.01546889247766)\n", + "('chainage of 1st point =', 1471.6002763834056)\n", + "('chainage of 2nd point =', 1681.6157452758832)\n", + "('length of final sub chord =', 8.399723616594429)\n", + "('chainage covered=', 1660)\n", + "('length of final sub chord', 21.615745275883228)\n", + "('deflection angle for initial sub chord =', 43.52844633883164, 'min')\n", + "('deflection angle for full chord', 2.5910642019719075, 'min')\n", + "('deflection angle for final sub chord', 1.8669261261094798, 'min')\n", + "('total deflection angle=', 17.5)\n", + "('apex distance =', 16.6843132234107)\n", + "('versed sine of curve =', 15.91211233275958)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "a=145;\n", + "cpi=1580;\n", + "de=5;\n", + "pi=30;\n", + "lct=0.00555;\n", + "\n", + "da=180-a;\n", + "\n", + "r=(1719)/5;\n", + "\n", + "print('radius =',r);\n", + "\n", + "#a\n", + "\n", + "tl=r*(math.tan((da/2)*(math.pi/180)));\n", + "print('tangent length =',tl);\n", + "\n", + "#b\n", + "\n", + "cl=(math.pi*r*da)/180;\n", + "print('curve length =',cl);\n", + "\n", + "#c\n", + "\n", + "c1t=cpi-tl;\n", + "print('chainage of 1st point =',c1t);\n", + "\n", + "#d\n", + "c2t=c1t+cl;\n", + "print('chainage of 2nd point =',c2t);\n", + "\n", + "#e\n", + "lisc=1480-c1t;\n", + "print('length of final sub chord =',lisc);\n", + "#f\n", + "n=6;\n", + "ini=30;\n", + "cc=1480+(n*30);\n", + "print('chainage covered=',cc);\n", + "#g\n", + "lfsc=c2t-cc;\n", + "print('length of final sub chord',lfsc);\n", + "#h\n", + "dasc=((c2t+100)*lisc)/(r);\n", + "print('deflection angle for initial sub chord =',dasc,'min');\n", + "#i\n", + "dafc=((c2t+100)*pi)/r;\n", + "print('deflection angle for full chord',dafc/60,'min');\n", + "#j\n", + "dafsc=((c2t+100)*lfsc)/r;\n", + "print('deflection angle for final sub chord',dafsc/60,'min');\n", + "\n", + "#k\n", + "\n", + "tda=da/2;\n", + "print('total deflection angle=',tda);\n", + "\n", + "\n", + "#l\n", + "k=1/(math.cos(tda*(math.pi/180)));\n", + "ad=r*(k-1);\n", + "print('apex distance =',ad);\n", + "\n", + "vs=r*(1-(math.cos(tda*(math.pi/180))));\n", + "print('versed sine of curve =',vs);\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-10 page 391 pb-1" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('length of vertical curve =', 240.0)\n", + "('chainage of A', 430.0)\n", + "('chainage of C', 670.0)\n", + "('Rl of A', 374.9)\n", + "('Rl of C', 374.66)\n", + "('Rl of E', 374.78)\n", + "('Rl of F', 375.14)\n", + "('tangent correction at the apex =', 0.36000000000001364)\n", + "('tangent correction at 1st,2nd,3rd,4th,5th,6th, points', 0.01, 0.04, 0.09, 0.16, 0.25, 0.36)\n", + "RL of the points on grade\n", + "(375.0, 375.1, 375.20000000000005, 375.30000000000007, 375.4000000000001, 375.5000000000001)\n", + "RL of the points on curve\n", + "(374.99, 375.06, 375.11000000000007, 375.14000000000004, 375.1500000000001, 375.1400000000001)\n", + "Rls of points on the grade right side\n", + "(375.36, 375.22, 375.08000000000004, 374.94000000000005, 374.80000000000007)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "pi=20;\n", + "cb=550;\n", + "rlb=375.5;\n", + "g1=0.5;\n", + "g2=-0.7;\n", + "#a\n", + "vc=((g1-g2)*20)/0.1;\n", + "\n", + "print('length of vertical curve =',vc);\n", + "\n", + "#b,c\n", + "\n", + "ca=cb-(vc/2);\n", + "cc=ca+vc;\n", + "print('chainage of A',ca);\n", + "print('chainage of C',cc);\n", + "\n", + "#d,e,f,g\n", + "\n", + "rla=rlb-((g1*0.5*vc)/100);\n", + "rlc=rlb-((-g2*0.5*vc)/100);\n", + "rle=0.5*(rla+rlc);\n", + "rlf=0.5*(rlb+rle);\n", + "\n", + "print('Rl of A',rla);\n", + "print('Rl of C',rlc);\n", + "print('Rl of E',rle);\n", + "print('Rl of F',rlf);\n", + "#h\n", + "tc=rlb-rlf;\n", + "print('tangent correction at the apex =',tc);\n", + "\n", + "#i\n", + "tc1=((g1-g2)*(pi*pi))/(400*0.5*vc);\n", + "tc2=((g1-g2)*(2*pi*2*pi))/(400*0.5*vc);\n", + "tc3=((g1-g2)*(3*pi*3*pi))/(400*0.5*vc);\n", + "tc4=((g1-g2)*(4*pi*4*pi))/(400*0.5*vc);\n", + "tc5=((g1-g2)*(5*pi*5*pi))/(400*0.5*vc);\n", + "tc6=((g1-g2)*(6*pi*6*pi))/(400*0.5*vc);\n", + "print('tangent correction at 1st,2nd,3rd,4th,5th,6th, points',tc1,tc2,tc3,tc4,tc5,tc6);\n", + "\n", + "#j\n", + "rp=(g1*pi)/100;\n", + "\n", + "rl1=rla+rp;\n", + "rl2=rl1+rp;\n", + "rl3=rl2+rp;\n", + "rl4=rl3+rp;\n", + "rl5=rl4+rp;\n", + "rl6=rl5+rp;\n", + "print('RL of the points on grade');\n", + "print(rl1,rl2,rl3,rl4,rl5,rl6)\n", + "\n", + "#k\n", + "rlc1=rl1-tc1;\n", + "rlc2=rl2-(tc2);\n", + "rlc3=rl3-(tc3);\n", + "rlc4=rl4-(tc4);\n", + "rlc5=rl5-(tc5);\n", + "rlc6=rl6-(tc6);\n", + "\n", + "print('RL of the points on curve');\n", + "print(rlc1,rlc2,rlc3,rlc4,rlc5,rlc6);\n", + "\n", + "#l\n", + "\n", + "fp=0.14;\n", + "\n", + "rlg5=rlb-fp;\n", + "rlg4=rlg5-fp;\n", + "rlg3=rlg4-fp;\n", + "rlg2=rlg3-fp;\n", + "rlg1=rlg2-fp;\n", + "\n", + "print('Rls of points on the grade right side');\n", + "print(rlg5,rlg4,rlg3,rlg2,rlg1);\n", + "\n", + "\n", + "\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "\n", + "### ch-10 page 393 pb-2" + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "('length of vertical curve', 300.0)\n", + "('RL of A=', 252.0)\n", + "('RL of C=', 251.25)\n", + "('RL of E=', 251.625)\n", + "('RL of F=', 251.0625)\n", + "RL on the grade on the side AB \n", + "(251.7, 251.39999999999998, 251.09999999999997, 250.79999999999995)\n", + "RL on grade on side BC\n", + "(250.65, 250.8, 250.95000000000002, 251.10000000000002)\n", + "tangent correction from expression \n", + "(-0.0225, -0.09, -0.2025, -0.36)\n" + ] + } + ], + "source": [ + "\n", + "from __future__ import division\n", + "\n", + "import math\n", + "\n", + "cb=400;\n", + "rlb=250.5;\n", + "pi=30;\n", + "g1=-1.0;\n", + "g2=0.5;\n", + "g=0.1;\n", + "ga=20;\n", + "#a\n", + "vc=(g1-g2)/g;\n", + "vc=-vc*ga;\n", + "print('length of vertical curve',vc);\n", + "\n", + "#b,c\n", + "ca=cb-(0.5*vc);\n", + "cc=ca+vc;\n", + "\n", + "#d,e,f,g\n", + "\n", + "rla=rlb+((0.5*vc)/100);\n", + "\n", + "rlc=rlb+((0.5*0.5*vc)/100);\n", + "\n", + "rle=0.5*(rla+rlc);\n", + "\n", + "rlf=0.5*(rle+rlb);\n", + "\n", + "print('RL of A=',rla);\n", + "print('RL of C=',rlc);\n", + "print('RL of E=',rle);\n", + "print('RL of F=',rlf);\n", + "\n", + "#h\n", + "fp=pi/100;\n", + "\n", + "rl1=rla-fp;\n", + "rl2=rl1-fp;\n", + "rl3=rl2-fp;\n", + "rl4=rl3-fp;\n", + "print('RL on the grade on the side AB ');\n", + "print(rl1,rl2,rl3,rl4);\n", + "\n", + "#i\n", + "\n", + "rp=(0.5*pi)/100;\n", + "\n", + "rls4=rlb+rp\n", + "rls3=rls4+rp\n", + "rls2=rls3+rp\n", + "rls1=rls2+rp\n", + "\n", + "print('RL on grade on side BC');\n", + "print(rls4,rls3,rls2,rls1);\n", + "\n", + "#j\n", + "\n", + "y1=((g1-g2)*(pi*pi))/(cb*0.5*vc);\n", + "y2=((g1-g2)*(2*pi*2*pi))/(cb*0.5*vc);\n", + "y3=((g1-g2)*(3*pi*3*pi))/(cb*0.5*vc);\n", + "y4=((g1-g2)*(4*pi*4*pi))/(cb*0.5*vc);\n", + "\n", + "print('tangent correction from expression ');\n", + "print(y1,y2,y3,y4);\n", + "\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |