diff options
Diffstat (limited to 'Principles_of_Physics_by_F.J.Bueche/Chapter9_2.ipynb')
-rw-r--r-- | Principles_of_Physics_by_F.J.Bueche/Chapter9_2.ipynb | 293 |
1 files changed, 293 insertions, 0 deletions
diff --git a/Principles_of_Physics_by_F.J.Bueche/Chapter9_2.ipynb b/Principles_of_Physics_by_F.J.Bueche/Chapter9_2.ipynb new file mode 100644 index 00000000..7a1ea09f --- /dev/null +++ b/Principles_of_Physics_by_F.J.Bueche/Chapter9_2.ipynb @@ -0,0 +1,293 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 09: Mechanical properties of Matter" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex9.1:pg-269" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Mass Mu= 0.149 Kg\n", + "\n", + "Side length of ice cube is= 5.46 cm\n" + ] + } + ], + "source": [ + " import math #Example9_1\n", + " \n", + " \n", + "#To find its mass and how large a cube of ice has the same mass\n", + "pu=18680.0 #units in Kg/meter**3\n", + "s=2*10**-2 #units in meters\n", + "vu=s**3.0 #units in meter**3\n", + "mu=pu*vu #units in Kg\n", + "print \"Mass Mu=\",round(mu,3),\" Kg\\n\"\n", + "pi=920 #units in Kg/meter**3\n", + "vi=mu/pi #units in meter**3\n", + "ss=vi**(1/3.0)*10**2 #units in cm\n", + "print \"Side length of ice cube is=\",round(ss,2),\"cm\" \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex9.2:pg-269" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The radius of the wire should be r= 1.6 mm and the cross sectional area is A= 0.0 meter**2\n", + "\n", + "The ball stretches the wire a distance of deltaL= 3.6 mm\n" + ] + } + ], + "source": [ + " import math #Example9_2\n", + " \n", + " \n", + "#To calculate the cross sectional area and how far the ball will stretch the wire\n", + "m=40.0 #units in Kg\n", + "g=9.8 #units in meter/sec**2\n", + "F=m*g #units in Kg meter/sec**2\n", + "stress=0.48*10**8 #units in Newton/meter**2\n", + "A=F/stress #units in meter**2\n", + "r=math.sqrt(A/math.pi)*10.0**3 #units in mm\n", + "print \"The radius of the wire should be r=\",round(r,1),\" mm and the cross sectional area is A=\",round(A),\"meter**2\"\n", + "y=200.0*10**9 #units in Newton/meter**2\n", + "strain=stress/y\n", + "L0=15 #units in meters\n", + "deltaL=strain*L0 #units in meters\n", + "deltaL=deltaL*10**3 #units in mm\n", + "print \"\\nThe ball stretches the wire a distance of deltaL=\",round(deltaL,2),\"mm\" \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex9.7:pg-273" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The flow rate is reduced by a factor of 16.0\n" + ] + } + ], + "source": [ + " import math #Example9_7\n", + " \n", + " \n", + " #To find out by what factor the blood flow in an artery is reduced\n", + "r1_r2=1/2.0 #The ratio by which the radius is altered in arterys\n", + "R1_R2=1/r1_r2**4 #Ratio by which flow is altered\n", + "print \"The flow rate is reduced by a factor of \",round(R1_R2)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex9.9:pg-274" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Pressure Difference at A and B is Pa-Pb= 1980.0 Pa therefore Preasure at A is High than at B\n" + ] + } + ], + "source": [ + " import math #Example9_9\n", + " \n", + " \n", + " #To compare the pressures at A and at B\n", + "p=1000 #Units in Kg/Meter**3\n", + "va=0.2 #units in meters/sec\n", + "vb=2 #units in meters/sec\n", + "Pa_Pb=-0.5*p*(va**2-vb**2) #units in Pa\n", + "print \"Pressure Difference at A and B is Pa-Pb=\",round(Pa_Pb),\" Pa therefore Preasure at A is High than at B\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex9.10:pg-276" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The speed of the rain drop is Vc= 0.049 meters/sec\n" + ] + } + ], + "source": [ + " import math #Example9_10\n", + " \n", + " \n", + " #To find out how fast a raindrop becomes turbulent\n", + "Nr=10 #Number of molecules\n", + "n=1.9*10**-5 #Units in PI\n", + "p=1.29 #Units in Kg/Meter**3\n", + "d=3*10**-3 #Units in meters\n", + "vc=(Nr*n)/(p*d) #units in meters/sec\n", + "print \"The speed of the rain drop is Vc=\",round(vc,3),\" meters/sec\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex9.11:pg-277" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The required power is= 95.0 hp\n" + ] + } + ], + "source": [ + " import math #Example9_11\n", + " \n", + " \n", + " #To find out what horsepower is required\n", + "p=1.29 #Units in Kg/Meter**3\n", + "Cd=0.45\n", + "af=2 #Units in Meter**2\n", + "v=20 #Units in meters/sec\n", + "M=1000 #units in Kg\n", + "F=(0.5*p*Cd*af*v**2)+((M/1000)*((110+(1.1*v)))) #Units in Newtons\n", + "Power=F*v #Units in Watts\n", + "Power=Power/747.3061 #units in Horse Power\n", + "reqHPower=Power**2 #unis in Horse power\n", + "print \"The required power is=\",round(reqHPower),\" hp\"\n", + " #In text book the answer is printed wrong as 80 Hp the correct answer is 95Hp\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex9.12:pg-278" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Sedimentation is vt= 0.0041 cm/sec\n" + ] + } + ], + "source": [ + " import math #Example9_12\n", + " \n", + " \n", + " #To find out the sedimentation rate of sphrical particles\n", + "b=2*10**-3 #units in cm\n", + "g=9.8 #Units in meters/sec**2\n", + "n=1 #units in m PI\n", + "Pp_Pt=1050 #units in Kg/Meter**3\n", + "vt=(((2*b**2*g)/(9*n))/(2*Pp_Pt))*10**6 #units in cm/sec\n", + "print \"Sedimentation is vt=\",round(vt,4),\"cm/sec\"\n", + " #in text book answer is printed wrong as vt=4.36*10**-3 cm/sec but the correct answer is vt=4.14*10**-3 cm/sec\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |