diff options
Diffstat (limited to 'Principles_of_Physics_by_F.J.Bueche/Chapter7_1.ipynb')
-rw-r--r-- | Principles_of_Physics_by_F.J.Bueche/Chapter7_1.ipynb | 431 |
1 files changed, 431 insertions, 0 deletions
diff --git a/Principles_of_Physics_by_F.J.Bueche/Chapter7_1.ipynb b/Principles_of_Physics_by_F.J.Bueche/Chapter7_1.ipynb new file mode 100644 index 00000000..85cf36f7 --- /dev/null +++ b/Principles_of_Physics_by_F.J.Bueche/Chapter7_1.ipynb @@ -0,0 +1,431 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter07: Motion in a Cirlce" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex7.1:pg-208" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " 70 degrees in radians is 1.22 radians \n", + " 70 degrees in revolutions it is 0.194 revolutions\n" + ] + } + ], + "source": [ + " import math #Example 7_1\n", + " \n", + " \n", + " #To convert angles to radians and revolutions\n", + "theta=70.0 #units in degrees\n", + "deg=360.0 #units in degrees\n", + "rad=theta*2*math.pi/deg #units in radians\n", + "rev=1 #units in revolution\n", + "rev=theta*rev/deg #units in revolution\n", + "print \" 70 degrees in radians is \",round(rad,2),\"radians \\n 70 degrees in revolutions it is \",round(rev,3),\" revolutions\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex7.2:pg-209" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Average angular velocity is w= 188.0 rad/sec\n" + ] + } + ], + "source": [ + " import math #Example 7_2\n", + " \n", + " \n", + "#To find average angular velocity\n", + "theta=1800.0 #units in rev\n", + "t=60.0 #units in sec\n", + "w=(theta/t) #units in rev/sec\n", + "w=w*(2*math.pi) #units in rad/sec\n", + "print \"Average angular velocity is w=\",round(w),\" rad/sec\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex7.3:pg-210" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Average angular acceleration is alpha= 2.0 rev/sec**2\n" + ] + } + ], + "source": [ + " import math #Example 7_3\n", + " \n", + " \n", + " #To find average angular acceleration\n", + "wf=240.0 #units in rev/sec\n", + "w0=0 #units in rev/sec\n", + "t=2.0 #units in minutes\n", + "t=t*60 #units in sec\n", + "alpha=(wf-w0)/t #units in rev/sec**2\n", + "print \"Average angular acceleration is alpha=\",round(alpha),\" rev/sec**2\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex7.4:pg-212" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Number of revolutions does it turn before rest is theta= -108.0 rev\n" + ] + } + ], + "source": [ + " import math #Example 7_4\n", + " \n", + " \n", + "#To find out how many revolutions does it turn before rest\n", + "wf=0 #units in rev/sec\n", + "w0=3 #units in rev/sec\n", + "t=18 #units in sec\n", + "alpha=(wf-w0)/t #units in rev/sec**2\n", + "theta=(w0*t)+0.5*(alpha*t**2) #units in rev\n", + "print \"Number of revolutions does it turn before rest is theta=\",round(theta),\" rev\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex7.5:pg-212" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Angular accelertion is a= 2.22 meters/sec**2\n", + "\n", + "Angular velocity is alpha= 5.56 rad/sec**2\n" + ] + } + ], + "source": [ + " import math #Example 7_5\n", + " \n", + " \n", + " #To find the angular acceleration and angular velocity of one wheel\n", + "vtf=20.0 #units in meters/sec\n", + "r=0.4 #units in meters\n", + "wf=vtf/r #units in rad/sec\n", + "vf=20.0 #units in meters/sec\n", + "v0=0 #units in meters/sec**2\n", + "t=9.0 #units in sec\n", + "a=(vf-v0)/t #units in meters/sec**2\n", + "alpha=a/r #units in rad/sec**2\n", + "print \"Angular accelertion is a=\",round(a,2),\" meters/sec**2\\n\"\n", + "print \"Angular velocity is alpha=\",round(alpha,2),\" rad/sec**2\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex7.6:pg-213" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The rotation rate is wf= 129.0 rad/sec\n" + ] + } + ], + "source": [ + " import math #Example 7_6\n", + " \n", + " \n", + " #To find out the rotation rate\n", + "at=8.6 #units in meters/sec**2\n", + "r=0.2 #units in meters\n", + "alpha=at/r #units in rad/sec**2\n", + "t=3 #units in sec\n", + "wf=alpha*t #units in rad/sec\n", + "print \"The rotation rate is wf=\",round(wf),\" rad/sec\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex7.7:pg-215" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The horizontal force must the pavement exerts is F= 8533.0 Newtons\n" + ] + } + ], + "source": [ + " import math #Example 7_7\n", + " \n", + " \n", + " #To calculate how large a horizontal force must the pavement exert\n", + "m=1200.0 #units in Kg\n", + "v=8.0 #units in meters/sec\n", + "r=9 #units in meters\n", + "F=(m*v**2)/r #units in Newtons\n", + "print \"The horizontal force must the pavement exerts is F=\",round(F),\" Newtons\"\n", + " #In text book the answer is printed wrong as F=8530 N but the correct answer is 8533 N\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex7.9:pg-220" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The angle where it should be banked is theta= 47.0 degrees\n" + ] + } + ], + "source": [ + " import math #Example 7_9\n", + " \n", + " \n", + " #To find out the angle where it should be banked\n", + "v=25 #units in meters/sec\n", + "r=60 #units in meters\n", + "g=9.8 #units in meters/sec**2\n", + "tantheta=v**2/(r*g) #units in radians\n", + "theta=math.atan(tantheta)*180/math.pi\n", + "print \"The angle where it should be banked is theta=\",round(theta),\" degrees\",\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex7.10:pg-220" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The F/W Ratio is= 1.36e-14\n" + ] + } + ], + "source": [ + " import math #Example 7_10\n", + " \n", + " \n", + " #To find out the ratio of F/W\n", + "G=6.67*10**-11 #units in Newton meter**2/Kg**2\n", + "m1=0.0080 #units in Kgs\n", + "m2=0.0080 #units in Kgs\n", + "r=2 #units in Meters\n", + "F=(G*m1*m2)/r**2 #units in Newtons\n", + "m=m1 #units in Kgs\n", + "g=9.8 #units in meter/sec**2\n", + "W=m*g #units in Newtons\n", + "F_W=F/W\n", + "print \"The F/W Ratio is=\",round(F_W,16)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex7.11:pg-221" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The mass of the sun is Ms= 2.01e+30 Kg\n" + ] + } + ], + "source": [ + " import math #Example 7_11\n", + " \n", + " \n", + " #To find the mass of the sun\n", + "t=3.15*10**7 #units in sec\n", + "r=1.5*10**11 #units in meters\n", + "v=(2*math.pi*r)/t #units in meters/sec\n", + "G=6.67*10**-11 #units in Newtons\n", + "ms=(v**2*r)/G #Units in Kg\n", + "print \"The mass of the sun is Ms=\",round(ms,-28),\"Kg\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex7.12:pg-222" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The orbital radius is r= 42250474.0 meters\n", + "\n", + "The orbital speed is v= 3073.0 meters/sec\n" + ] + } + ], + "source": [ + " import math #Example 7_12\n", + " \n", + " \n", + " #To findout the orbital radius and its speed\n", + "G=6.67*10**-11 #units in Newtons\n", + "me=5.98*10**24 #units in Kg\n", + "t=86400.0 #units in sec\n", + "r=((G*me*t**2)/(4*math.pi**2))**(1/3.0)\n", + "print \"The orbital radius is r= \",round(r),\" meters\\n\"\n", + "v=(2*math.pi*r)/t #units in meters/sec\n", + "print \"The orbital speed is v=\",round(v),\" meters/sec\"\n", + " #in textbook the answer is printed wrong as v=3070 m/sec but the correct answer is v=3073 m/sec\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |