summaryrefslogtreecommitdiff
path: root/Principles_of_Physics_by_F.J.Bueche/Chapter5_2.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Principles_of_Physics_by_F.J.Bueche/Chapter5_2.ipynb')
-rw-r--r--Principles_of_Physics_by_F.J.Bueche/Chapter5_2.ipynb618
1 files changed, 618 insertions, 0 deletions
diff --git a/Principles_of_Physics_by_F.J.Bueche/Chapter5_2.ipynb b/Principles_of_Physics_by_F.J.Bueche/Chapter5_2.ipynb
new file mode 100644
index 00000000..64ed1a47
--- /dev/null
+++ b/Principles_of_Physics_by_F.J.Bueche/Chapter5_2.ipynb
@@ -0,0 +1,618 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 05:Work and Energy"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.1:pg-159"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The work done is W= 0.0 Joules\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 5_1\n",
+ " \n",
+ " \n",
+ " #To calculate the work done\n",
+ "Fs=8.0 #units in meters\n",
+ "W=Fs*round(math.cos(math.pi/2.0)) #units in Joules\n",
+ "print \"The work done is W=\",round(W),\" Joules\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.2:pg-159"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Work done when lifting is W=mgh* 1.0 \n",
+ "\n",
+ "Work done when downing is W=mgh* -1.0 \n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 5_2\n",
+ " \n",
+ " \n",
+ " #To calculate the work done when lifting object as well as lowering the object\n",
+ "Fs=1.0 #units in terms of Fs\n",
+ "theta=0 #units in degrees\n",
+ "W=Fs*math.cos(theta*math.pi/180) #units in terms of m, g and h\n",
+ "print \"Work done when lifting is W=mgh*\",round(W),\"\\n\"\n",
+ "theta=180.0 #units in degrees\n",
+ "W=Fs*math.cos(theta*math.pi/180) #units in terms of m, g and h\n",
+ "print \"Work done when downing is W=mgh*\",round(W),\"\\n\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.3:pg-160"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Work done is W= 100.0 Joules\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 5_3\n",
+ " \n",
+ " \n",
+ " #To find the work done by the pulling force\n",
+ "F=20.0 #units in Newtons\n",
+ "d=5 #units in meters\n",
+ "W=F*d #units in joules\n",
+ "print \"Work done is W=\",round(W),\" Joules\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.4:pg-160"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Power developed P= 0.07882 hp\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 5_4\n",
+ " \n",
+ " \n",
+ " #To find out the power being developed in motor\n",
+ "m=200 #units on Kg\n",
+ "g=9.8 #units in meters/sec**2\n",
+ "Fy=m*g #units in Newtons\n",
+ "vy=0.03 #units in meter/sec\n",
+ "P=Fy*vy #units in Watts\n",
+ "P=P*(1.0/746) #units in hp\n",
+ "print \"Power developed P=\",round(P,5),\" hp\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.5:pg-161"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Average frictional force f= 4000.0 N\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 5_5\n",
+ " \n",
+ " \n",
+ " #To calculate the average frictional force developed\n",
+ "m=2000 #units in Kg\n",
+ "vf=20 #units in meters/sec\n",
+ "d=100 #units in meters\n",
+ "f=(0.5*m*vf**2)/d #units in Newtons\n",
+ "print \"Average frictional force f=\",round(f),\" N\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.6:pg-162"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The speed of the car is vf= 14.1 meters/sec\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 5_6\n",
+ " \n",
+ "\n",
+ " #To find out how fast the car is going\n",
+ "f=4000.0 #units in Newtons\n",
+ "s=50.0 #units in meters\n",
+ "theta=180.0 #units in degrees\n",
+ "m=2000.0 #units in Kg\n",
+ "v0=20 #units in meter/sec\n",
+ "vf=math.sqrt((2*((f*s*math.cos(theta*math.pi/180))+(0.5*m*v0**2)))/m) #units in meter/sec\n",
+ "print \"The speed of the car is vf=\",round( vf,1),\" meters/sec\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.7:pg-163"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Tension in the rope is T= 396.0 N\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 5_7\n",
+ "\n",
+ "\n",
+ " \n",
+ " #To find the required tension in the rope\n",
+ "m=40 #units in Kg\n",
+ "g=9.8 #units in meters/sec**2\n",
+ "theta=0 #units in degrees\n",
+ "vf=0.3 #units in meters/sec\n",
+ "s=0.5 #units in meters\n",
+ "T=round((m*g)+((0.5*m*vf**2)/(s*math.cos(theta*math.pi/180)))) #units in Newtons\n",
+ "print \"Tension in the rope is T=\",round(T),\" N\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.8:pg-163"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 10,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Frictional force required is f= 6000.0 N\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 5_8\n",
+ " \n",
+ " \n",
+ " #To calculate the frictional force\n",
+ "m=900.0 #units in Kg\n",
+ "v0=20.0 #units in meters/sec\n",
+ "s=30 #units in meters\n",
+ "f=(0.5*m*v0**2)/s #units in Newtons\n",
+ "print \"Frictional force required is f=\",round(f),\" N\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.9:pg-164"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 12,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The ball is moving with a speed of vf= 8.85 meters/sec\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 5_9\n",
+ " \n",
+ " \n",
+ " #To find out how fast a a ball is going\n",
+ "m=3 #units in Kg\n",
+ "g=9.8 #units in meters/sec**2\n",
+ "hf=0 #units in meters\n",
+ "h0=4 #units in meters\n",
+ "vf=2*math.sqrt(((m*g*-(hf-h0))*0.5)/m) #units in meters/sec\n",
+ "print \"The ball is moving with a speed of vf=\",round(vf,2),\" meters/sec\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.10:pg-164"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 13,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The average frictional force f= 15.9 N\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 5_10\n",
+ " \n",
+ " \n",
+ " #To calculate how large the average frictional force\n",
+ "a=9.8 #units in meters/sec**2\n",
+ "s=4 #units in meters\n",
+ "v=6 #units in meters/sec\n",
+ "m=3 #units on Kg\n",
+ "f=m*((a*s)-(0.5*v**2))/s #units in Newtons\n",
+ "print \"The average frictional force f=\",round(f,1),\" N\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.11:pg-165"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 14,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The car is going at a speed of vf= 13.7 meters/sec at point B\n",
+ "\n",
+ "The car is going at a speed of vf= 5.59 meters/sec at point C\n",
+ "\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 5_11\n",
+ " \n",
+ " \n",
+ " #To find out how fast a car is going at points B and C\n",
+ "m=300 #units in Kg\n",
+ "g=9.8 #units in meters/sec**2\n",
+ "hb_ha=10 #units in meters\n",
+ "f=20 #units in Newtons\n",
+ "s=60 #units in meters\n",
+ "vf=2*math.sqrt((0.5*((m*g*(hb_ha))-(f*s)))/m) #units in meters/sec\n",
+ "print \"The car is going at a speed of vf=\",round(vf,1),\" meters/sec at point B\\n\"\n",
+ "hc_ha=2 #units in meters\n",
+ "vf=2*math.sqrt((0.5*((m*g*(hc_ha))-(f*s)))/m) #units in meters/sec\n",
+ "print \"The car is going at a speed of vf=\",round(vf,2),\" meters/sec at point C\\n\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.12:pg-166"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 15,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Average frictional force is f= 2182.0 N\n",
+ "\n",
+ "The distance by which the car goes beyond is Sbe= 11.5 meters\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 5_12\n",
+ " \n",
+ " \n",
+ " #How far the average velocity and how far beyond B does the car goes\n",
+ "m=2000 #units in Kg\n",
+ "vb=5 #units in meters/sec\n",
+ "va=20 #units in meters/sec\n",
+ "hb_ha=8 #units in meters\n",
+ "g=9.8 #units in meters/sec**2\n",
+ "sab=100 #units in meters\n",
+ "f=-((0.5*m*(vb**2-va**2))+(m*g*(hb_ha)))/sab #units in Newtons\n",
+ "print \"Average frictional force is f=\",round(f),\" N\\n\"\n",
+ "Sbe=(0.5*m*vb**2)/f #units in meters\n",
+ "print \"The distance by which the car goes beyond is Sbe=\",round(Sbe,1),\" meters\"\n",
+ " #In text book answer is printed wrong as f=2180 N but correct answer is f=2182N\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.13:pg-167"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 16,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The average force required is f= 6553.0 N\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 5_13\n",
+ " \n",
+ " \n",
+ " #To find out how large the force is required\n",
+ "m=2 #units in Kg\n",
+ "g=9.8 #units in meters/sec**2\n",
+ "hc_ha=10.03 #units in meters\n",
+ "sbc=0.030 #units in meters\n",
+ "f=(m*g*(hc_ha))/sbc #units in Newtons\n",
+ "print \"The average force required is f=\",round(f),\" N\"\n",
+ " #In text book answer is printed wrong as f=6550 N correct answer is f=6552N\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.14:pg-168"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 18,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The velocity of pendulum at point B is vb= 2.62 meters/sec\n",
+ "\n",
+ "From A to C hc=ha and Vc=Va=0 so Frictional force is Negligible at point C\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 5_14\n",
+ " \n",
+ " \n",
+ " #To find out how fast the pendulum is moving \n",
+ " #At point A\n",
+ "hb_ha=0.35 #units in Meters\n",
+ "g=9.8 #units in meters/sec**2\n",
+ "vb=math.sqrt((g*hb_ha)/0.5) #units in meters/sec\n",
+ "print \"The velocity of pendulum at point B is vb=\",round(vb,2),\" meters/sec\\n\"\n",
+ "print \"From A to C hc=ha and Vc=Va=0 so Frictional force is Negligible at point C\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.15:pg-169"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 19,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Force required is F= 3313.0 N\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 5_15\n",
+ " \n",
+ " \n",
+ " #To find out how large a force is required\n",
+ "m=2000 #units in Kg\n",
+ "vf=15 #units in meters/sec\n",
+ "f1=500 #units in Newtons\n",
+ "F=((0.5*m*(vf**2))/80)+f1 #units in Newtons\n",
+ "print \"Force required is F=\",round(F),\" N\"\n",
+ " #In text book the answer is printed wrong as F=3300 N but the correct answer is 3312 N\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex5.16:pg-169"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 20,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "IMA= 3.0 \n",
+ "\n",
+ "AMA= 2.5 \n",
+ "\n",
+ "Percentage of efficiency is 83.0 percent\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example 5_16\n",
+ " \n",
+ " \n",
+ " #To find IMA AMA and Efficiency of the system\n",
+ "si=3.0\n",
+ "so=1\n",
+ "IMA=si/so\n",
+ "Fo=2000.0 #units in Newtons\n",
+ "Fi=800.0 #units in Newtons\n",
+ "AMA=Fo/Fi\n",
+ "effi=AMA/IMA*100\n",
+ "print \"IMA=\",round(IMA,2),\"\\n\"\n",
+ "print \"AMA=\",round(AMA,2),\"\\n\"\n",
+ "print \"Percentage of efficiency is \",round(effi),\" percent\"\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}