diff options
Diffstat (limited to 'Principles_of_Physics_by_F.J.Bueche/Chapter16_1.ipynb')
-rw-r--r-- | Principles_of_Physics_by_F.J.Bueche/Chapter16_1.ipynb | 398 |
1 files changed, 398 insertions, 0 deletions
diff --git a/Principles_of_Physics_by_F.J.Bueche/Chapter16_1.ipynb b/Principles_of_Physics_by_F.J.Bueche/Chapter16_1.ipynb new file mode 100644 index 00000000..1690e773 --- /dev/null +++ b/Principles_of_Physics_by_F.J.Bueche/Chapter16_1.ipynb @@ -0,0 +1,398 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 16:Electric Potential" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex16.1:pg-731" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The magnitude of electric field is E= 2400.0 V/meters\n" + ] + } + ], + "source": [ + " import math #Example16_1\n", + " \n", + " \n", + "#To find the magnitude of the electric field\n", + "v=12.0 #Units in V\n", + "d=5.0*10**-3 #units in Meters\n", + "e=v/d #Units in V/meter\n", + "print \"The magnitude of electric field is E=\",round(e),\" V/meters\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex16.2:pg-731" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The speed of the proton is Vab= 92858.79 meters/sec\n" + ] + } + ], + "source": [ + " import math #Example16_2\n", + " \n", + " \n", + "#To calculate the speed of the proton\n", + "q=1.6*10**-19 #Units in C\n", + "vab=45 #Units in V\n", + "m=1.67*10**-27 #Units in Kg\n", + "va=math.sqrt((2*q*vab)/m) #Units in meters/sec\n", + "print \"The speed of the proton is Vab=\",round(va,2),\" meters/sec\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex16.3:pg-733" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The speed of the electron is Vab= 3975777.37 meters/sec\n" + ] + } + ], + "source": [ + " import math #Example16_3\n", + " \n", + "#To find the sped of an electron\n", + "e=1.6*10**-19 #Units in C\n", + "vab=45 #Units in V\n", + "m=9.11*10**-31 #Units in Kg\n", + "va=math.sqrt((2*e*vab)/m) #Units in meters/sec\n", + "print \"The speed of the electron is Vab=\",round(va,2),\" meters/sec\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex16.4:pg-735" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Charged metal object have an equi potential volume so its surface is am equi potential volume\n", + "Because lines of force must be perpendiculat ro equipotential lines and surfaces.\n" + ] + } + ], + "source": [ + " import math #Example16_4\n", + " \n", + " \n", + " #To sketch the equipotentials and electric field lines near a charged metal object\n", + "print \"Charged metal object have an equi potential volume so its surface is am equi potential volume\\nBecause lines of force must be perpendiculat ro equipotential lines and surfaces.\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex16.5:pg-735" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The work done in carrying proton is=\n", + "1.44e-18\n", + "Joules\n", + "\n", + "The work done in carrying electron is=\n", + "-1.44e-18\n", + "Joules\n", + "\n" + ] + } + ], + "source": [ + " import math #Example16_5\n", + " \n", + " \n", + "#To find the work done in carrying a proton and for an electron\n", + "q=1.6*10**-19 #Units in C\n", + "vab=9.0 #Units in V\n", + "work=q*vab #Units in J\n", + "print \"The work done in carrying proton is=\"\n", + "print work\n", + "print \"Joules\\n\"\n", + "q=-1.6*10**-19 #Units in C\n", + "work=q*vab #Units in J\n", + "print \"The work done in carrying electron is=\"\n", + "print work\n", + "print \"Joules\\n\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex16.6:pg-736" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The speed of proton before it strikes is Vb= 7756781.9 meters/sec\n" + ] + } + ], + "source": [ + " import math #Example16_6\n", + " \n", + " #To calculate the speed just befor it strikes it\n", + "va=8*10**6 #Units in meters/sec\n", + "q=1.6*10**-19 #Units in C\n", + "m=1.67*10**-27 #Units in Kg\n", + "vab=20000 #Units in V\n", + "vb=math.sqrt(va**2-((2*q*vab)/m)) #Units in meters/sec\n", + "print \"The speed of proton before it strikes is Vb=\",round(vb,1),\" meters/sec\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex16.7:pg-737" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Since each proton has a minimum energy of 13.6 eV and a charge of 1.602*10**-19 C\n", + " The required potential difference is=13.6 eV\n" + ] + } + ], + "source": [ + " import math #Example16_7\n", + " \n", + " \n", + " #To calculate the minimum value of Vab needed\n", + "print \"Since each proton has a minimum energy of 13.6 eV and a charge of 1.602*10**-19 C\\n The required potential difference is=13.6 eV\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex16.8:pg-737" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The speed of electron is v= 4150286.78 meters/sec\n" + ] + } + ], + "source": [ + " import math #Example16_8\n", + " \n", + " #To find out the speed of the proton\n", + "k=9*10**9 #Units in N meter**2/C**2\n", + "q=5*10.0**-6 #Units in C\n", + "r=0.5 #Units in meters\n", + "v1=(k*q)/r #Units in V\n", + "q=1.6*10**-19 #Units in V\n", + "m=1.672*10**-27 #Units in Kg\n", + "v=math.sqrt((v1*q*2)/m) #Units in V\n", + "print \"The speed of electron is v=\",round(v,2),\" meters/sec\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex16.9:pg-739" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Due to 5*10**-8 C V1= 4500.0 V\n", + "Due to 8*10**-8 C V2= 7200.0 V\n", + "Due to 40*10**-8 C V3= -18000.0 V\n", + " Absolute potential at B is Vb= -6300.0 V\n" + ] + } + ], + "source": [ + " import math #Example16_9\n", + " \n", + " \n", + " #To compute the absolute potential at B\n", + "k=9*10**9 #Units in N meter**2/C**2\n", + "q=5*10.0**-8 #Units in C\n", + "r=0.1 #Units in meters\n", + "v1=(k*q)/r #Units in V\n", + "q=8*10**-8 #Units in C\n", + "r=0.1 #Units in meters\n", + "v2=(k*q)/r #Units in V\n", + "q=40*10**-8 #Units in C\n", + "r=0.2 #Units in meters\n", + "v3=-(k*q)/r #Units in V\n", + "vb=v1+v2+v3 #Units in V \n", + "print \"Due to 5*10**-8 C V1=\",round(v1),\" V\\nDue to 8*10**-8 C V2=\",round(v2),\" V\\nDue to 40*10**-8 C V3=\",round(v3),\" V\\n Absolute potential at B is Vb=\",round(vb),\" V\"\n", + " \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex16.10:pg-739" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The absolute potential is V= 27.2 V\n", + "\n", + "The energy that is required is W=\n", + "4.35e-18 J\n" + ] + } + ], + "source": [ + " import math #Example16_10\n", + " \n", + " \n", + " #To find the absolute potential and how much energy is needed to pull the electrons from atom\n", + "k=9*10**9 #Units in N meter**2/C**2\n", + "q=1.6*10**-19 #Units in C\n", + "r=5.3*10**-11 #Units in meters\n", + "v=(k*q)/r #Units in V\n", + "print \"The absolute potential is V=\",round(v,1),\" V\\n\"\n", + "Vinfinity=0 #Units in V\n", + "deltaV=Vinfinity-v #Units in V\n", + "work=-q*deltaV #Units in J\n", + "print \"The energy that is required is W=\"\n", + "print round(work,20),\"J\" \n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |