diff options
Diffstat (limited to 'Principles_of_Physics_by_F.J.Bueche/Chapter15_1.ipynb')
-rw-r--r-- | Principles_of_Physics_by_F.J.Bueche/Chapter15_1.ipynb | 348 |
1 files changed, 348 insertions, 0 deletions
diff --git a/Principles_of_Physics_by_F.J.Bueche/Chapter15_1.ipynb b/Principles_of_Physics_by_F.J.Bueche/Chapter15_1.ipynb new file mode 100644 index 00000000..0f10bc03 --- /dev/null +++ b/Principles_of_Physics_by_F.J.Bueche/Chapter15_1.ipynb @@ -0,0 +1,348 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 15:Electric Forces and Fields" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex15.1:pg-719" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The value of q is= 3.61e-06 C\n", + "\n", + "Number of electrons to be removed is=\n", + "2.25625e+13\n", + "Fraction of atoms lost is=\n", + "7.52083333333e-10\n" + ] + } + ], + "source": [ + " import math #Example15_1\n", + " \n", + " #To find the value of q and how many electrons must be removed and fraction of atoms lost\n", + "dist=2 #Units in meters\n", + "f=0.0294 #Units in N\n", + "s=9*10**9 #Units in N meter**2/C**2\n", + "q=math.sqrt((dist**2*f)/s) #Units in C\n", + "print \"The value of q is=\",round(q,8),\" C\\n\"\n", + "charge=3.61*10**-6 #Units in C\n", + "c_elec=1.6*10**-19 #Units in C\n", + "n=charge/c_elec #Units in number\n", + "print \"Number of electrons to be removed is=\"\n", + "print n\n", + "f1=3*10.0**22 #Units in number\n", + "fraction=n/f1 #Units of number\n", + "print \"Fraction of atoms lost is=\"\n", + "print fraction\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex15.2:pg-721" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The force on the center charge is= 0.02813 N\n" + ] + } + ], + "source": [ + " import math #Example15_2\n", + " \n", + " \n", + " #To find the force on the center charge\n", + "k=9*10**9 #Units in N meter**2/C**2\n", + "q1=4*10.0**-6 #Units in C\n", + "q2=5*10.0**-6 #Units in C\n", + "r1=2 #Units in meters\n", + "r2=4 #Units in meters\n", + "q3=6*10.0**-6 #Units in C\n", + "f1=(k*q1*q2)/r1**2 #Units in N\n", + "f2=(k*q2*q3)/r2**2 #Units in N\n", + "f=f1-f2 #Units in C\n", + "print \"The force on the center charge is=\",round(f,5),\" N\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex15.3:pg-722" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The resultant force is f= 19.0 N \n", + "The resultant angle is theta= 71.6 degrees\n" + ] + } + ], + "source": [ + " import math #Example15_3\n", + " \n", + " \n", + " #To find the resultant force\n", + "f1=6 #Units in N\n", + "f2=18 #Units in N\n", + "f=math.sqrt(f1**2+f2**2) #Units in N\n", + "theta=math.atan(f2/f1)*180/math.pi #Units in degrees\n", + "print \"The resultant force is f=\",round(f),\" N \\nThe resultant angle is theta=\",round(theta,1),\" degrees\"\n", + " #In text book answer printed wrong as f=19 N correct answer is f=18N \n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex15.4:pg-724" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The resultant force is f= 3.4 N \n", + " The resultant angle is theta= 65.0 degrees\n" + ] + } + ], + "source": [ + " import math #Example15_4\n", + " \n", + "\n", + " #To find the resultant force on 20 micro C\n", + "f1=2 #Units in N\n", + "f2=1.8 #Units in N\n", + "theta=37.0 #Units in degrees\n", + "f2x=f2*math.cos(theta*math.pi/180) #Units in N\n", + "f2y=f2*math.sin(theta*math.pi/180) #Units in N\n", + "fy=f1+f2y #Units in N\n", + "f=math.sqrt(fy**2+f2x**2) #Units in N\n", + "theta=math.atan(fy/f2x)*180/math.pi #Units in degrees\n", + "print \"The resultant force is f=\",round(f,1),\" N \\n The resultant angle is theta=\",round(theta,1),\" degrees\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex15.6:pg-726 " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The magnitude of E is=\n", + "7198876.9\n", + "N/C\n" + ] + } + ], + "source": [ + " import math #Example15_6\n", + " \n", + " \n", + " #To find the magnitude of E\n", + "k=9*10**9 #Units in N meter**2/C**2\n", + "q=3.6*10**-6 #Units in C\n", + "theta=37 #Units in degrees\n", + "r=10*math.sin(theta*math.pi/180)*10**-2 #Units in meters \n", + "e1=(k*q)/r**2 #Units in N/C\n", + "q2=5*10**-6 #Units in C\n", + "theta=37 #Units in degrees\n", + "r1=10*10**-2 #Units in meters \n", + "e2=(k*q2)/r1**2 #Units in N/C\n", + "e1y=e1 #Units in N/C\n", + "e2x=e2*math.cos(theta*math.pi/180) #Units in N/C\n", + "e2y=-e2*math.sin(theta*math.pi/180) #Units in N/C\n", + "ex=e2x #Units in N/C\n", + "ey=e1y+e2y #Units in N/C\n", + "e=math.sqrt(ex**2+ey**2) #Units in N/C\n", + "print \"The magnitude of E is=\"\n", + "print round(e,2)\n", + "print \"N/C\"\n", + " #In text book the answer isprinted wrong as E=7.26*10**6 N/C but the correct answer is E=7198876.9 N/C\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex15.7:pg-726" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The charge occured is q= 8.33e-07 C\n" + ] + } + ], + "source": [ + " import math #Example15_7\n", + " \n", + " \n", + " #To find out how much charge occurs\n", + "e=3*10.0**6 #Units in N/C\n", + "r=0.050 #Units in meters\n", + "k=9*10.0**9 #Units in N meter**2/C**2\n", + "q=(e*r**2)/k #Units in C\n", + "print \"The charge occured is q=\",round(q,9),\" C\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex15.8:pg-727" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Lines of force come out of positive charge q suspended in cavity.\n", + "Cavity \n", + "surface must possess a negative charge since lines of force go and terminate on q.\n", + "Therefore a charge +q must exist on outer portions.\n" + ] + } + ], + "source": [ + " import math #Example15_8\n", + " \n", + " \n", + " #To show using lines of force that a charge suspended with in cavity induces an equal and opposite charge on surface\n", + "print \"Lines of force come out of positive charge q suspended in cavity.\\nCavity \\nsurface must possess a negative charge since lines of force go and terminate on q.\\nTherefore a charge +q must exist on outer portions.\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex15.9:pg-728" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The field goes by a speed of 47952.0 meters/sec\n" + ] + } + ], + "source": [ + " import math #Example15_9\n", + " \n", + " #To find the speed just before the field strikes\n", + "e=6000 #Units in N/C\n", + "q=1.6*10**-19 #Units in C\n", + "f=e*q #Units in N\n", + "m=1.67*10**-27 #Units in Kg\n", + "a=f/m #Units in meters/sec**2\n", + "vo=0 #Units in meters/sec\n", + "x=2*10**-3 #Units in meters\n", + "v=math.sqrt(vo**2+(2*a*x)) #Units in meters/sec\n", + "print \"The field goes by a speed of \",round(v),\" meters/sec\"\n", + " #In text book answer printed wrong as v=48000 meters/sec the correct answer is v=47952 meters/sec \n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |