summaryrefslogtreecommitdiff
path: root/Principles_of_Physics_by_F.J.Bueche/Chapter15_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Principles_of_Physics_by_F.J.Bueche/Chapter15_1.ipynb')
-rw-r--r--Principles_of_Physics_by_F.J.Bueche/Chapter15_1.ipynb348
1 files changed, 348 insertions, 0 deletions
diff --git a/Principles_of_Physics_by_F.J.Bueche/Chapter15_1.ipynb b/Principles_of_Physics_by_F.J.Bueche/Chapter15_1.ipynb
new file mode 100644
index 00000000..0f10bc03
--- /dev/null
+++ b/Principles_of_Physics_by_F.J.Bueche/Chapter15_1.ipynb
@@ -0,0 +1,348 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 15:Electric Forces and Fields"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex15.1:pg-719"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The value of q is= 3.61e-06 C\n",
+ "\n",
+ "Number of electrons to be removed is=\n",
+ "2.25625e+13\n",
+ "Fraction of atoms lost is=\n",
+ "7.52083333333e-10\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example15_1\n",
+ " \n",
+ " #To find the value of q and how many electrons must be removed and fraction of atoms lost\n",
+ "dist=2 #Units in meters\n",
+ "f=0.0294 #Units in N\n",
+ "s=9*10**9 #Units in N meter**2/C**2\n",
+ "q=math.sqrt((dist**2*f)/s) #Units in C\n",
+ "print \"The value of q is=\",round(q,8),\" C\\n\"\n",
+ "charge=3.61*10**-6 #Units in C\n",
+ "c_elec=1.6*10**-19 #Units in C\n",
+ "n=charge/c_elec #Units in number\n",
+ "print \"Number of electrons to be removed is=\"\n",
+ "print n\n",
+ "f1=3*10.0**22 #Units in number\n",
+ "fraction=n/f1 #Units of number\n",
+ "print \"Fraction of atoms lost is=\"\n",
+ "print fraction\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex15.2:pg-721"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The force on the center charge is= 0.02813 N\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example15_2\n",
+ " \n",
+ " \n",
+ " #To find the force on the center charge\n",
+ "k=9*10**9 #Units in N meter**2/C**2\n",
+ "q1=4*10.0**-6 #Units in C\n",
+ "q2=5*10.0**-6 #Units in C\n",
+ "r1=2 #Units in meters\n",
+ "r2=4 #Units in meters\n",
+ "q3=6*10.0**-6 #Units in C\n",
+ "f1=(k*q1*q2)/r1**2 #Units in N\n",
+ "f2=(k*q2*q3)/r2**2 #Units in N\n",
+ "f=f1-f2 #Units in C\n",
+ "print \"The force on the center charge is=\",round(f,5),\" N\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex15.3:pg-722"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The resultant force is f= 19.0 N \n",
+ "The resultant angle is theta= 71.6 degrees\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example15_3\n",
+ " \n",
+ " \n",
+ " #To find the resultant force\n",
+ "f1=6 #Units in N\n",
+ "f2=18 #Units in N\n",
+ "f=math.sqrt(f1**2+f2**2) #Units in N\n",
+ "theta=math.atan(f2/f1)*180/math.pi #Units in degrees\n",
+ "print \"The resultant force is f=\",round(f),\" N \\nThe resultant angle is theta=\",round(theta,1),\" degrees\"\n",
+ " #In text book answer printed wrong as f=19 N correct answer is f=18N \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex15.4:pg-724"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The resultant force is f= 3.4 N \n",
+ " The resultant angle is theta= 65.0 degrees\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example15_4\n",
+ " \n",
+ "\n",
+ " #To find the resultant force on 20 micro C\n",
+ "f1=2 #Units in N\n",
+ "f2=1.8 #Units in N\n",
+ "theta=37.0 #Units in degrees\n",
+ "f2x=f2*math.cos(theta*math.pi/180) #Units in N\n",
+ "f2y=f2*math.sin(theta*math.pi/180) #Units in N\n",
+ "fy=f1+f2y #Units in N\n",
+ "f=math.sqrt(fy**2+f2x**2) #Units in N\n",
+ "theta=math.atan(fy/f2x)*180/math.pi #Units in degrees\n",
+ "print \"The resultant force is f=\",round(f,1),\" N \\n The resultant angle is theta=\",round(theta,1),\" degrees\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex15.6:pg-726 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The magnitude of E is=\n",
+ "7198876.9\n",
+ "N/C\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example15_6\n",
+ " \n",
+ " \n",
+ " #To find the magnitude of E\n",
+ "k=9*10**9 #Units in N meter**2/C**2\n",
+ "q=3.6*10**-6 #Units in C\n",
+ "theta=37 #Units in degrees\n",
+ "r=10*math.sin(theta*math.pi/180)*10**-2 #Units in meters \n",
+ "e1=(k*q)/r**2 #Units in N/C\n",
+ "q2=5*10**-6 #Units in C\n",
+ "theta=37 #Units in degrees\n",
+ "r1=10*10**-2 #Units in meters \n",
+ "e2=(k*q2)/r1**2 #Units in N/C\n",
+ "e1y=e1 #Units in N/C\n",
+ "e2x=e2*math.cos(theta*math.pi/180) #Units in N/C\n",
+ "e2y=-e2*math.sin(theta*math.pi/180) #Units in N/C\n",
+ "ex=e2x #Units in N/C\n",
+ "ey=e1y+e2y #Units in N/C\n",
+ "e=math.sqrt(ex**2+ey**2) #Units in N/C\n",
+ "print \"The magnitude of E is=\"\n",
+ "print round(e,2)\n",
+ "print \"N/C\"\n",
+ " #In text book the answer isprinted wrong as E=7.26*10**6 N/C but the correct answer is E=7198876.9 N/C\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex15.7:pg-726"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The charge occured is q= 8.33e-07 C\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example15_7\n",
+ " \n",
+ " \n",
+ " #To find out how much charge occurs\n",
+ "e=3*10.0**6 #Units in N/C\n",
+ "r=0.050 #Units in meters\n",
+ "k=9*10.0**9 #Units in N meter**2/C**2\n",
+ "q=(e*r**2)/k #Units in C\n",
+ "print \"The charge occured is q=\",round(q,9),\" C\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex15.8:pg-727"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "Lines of force come out of positive charge q suspended in cavity.\n",
+ "Cavity \n",
+ "surface must possess a negative charge since lines of force go and terminate on q.\n",
+ "Therefore a charge +q must exist on outer portions.\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example15_8\n",
+ " \n",
+ " \n",
+ " #To show using lines of force that a charge suspended with in cavity induces an equal and opposite charge on surface\n",
+ "print \"Lines of force come out of positive charge q suspended in cavity.\\nCavity \\nsurface must possess a negative charge since lines of force go and terminate on q.\\nTherefore a charge +q must exist on outer portions.\"\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex15.9:pg-728"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The field goes by a speed of 47952.0 meters/sec\n"
+ ]
+ }
+ ],
+ "source": [
+ " import math #Example15_9\n",
+ " \n",
+ " #To find the speed just before the field strikes\n",
+ "e=6000 #Units in N/C\n",
+ "q=1.6*10**-19 #Units in C\n",
+ "f=e*q #Units in N\n",
+ "m=1.67*10**-27 #Units in Kg\n",
+ "a=f/m #Units in meters/sec**2\n",
+ "vo=0 #Units in meters/sec\n",
+ "x=2*10**-3 #Units in meters\n",
+ "v=math.sqrt(vo**2+(2*a*x)) #Units in meters/sec\n",
+ "print \"The field goes by a speed of \",round(v),\" meters/sec\"\n",
+ " #In text book answer printed wrong as v=48000 meters/sec the correct answer is v=47952 meters/sec \n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.11"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}