diff options
Diffstat (limited to 'Principles_of_Physics_by_F.J.Bueche/Chapter13_1.ipynb')
-rw-r--r-- | Principles_of_Physics_by_F.J.Bueche/Chapter13_1.ipynb | 265 |
1 files changed, 265 insertions, 0 deletions
diff --git a/Principles_of_Physics_by_F.J.Bueche/Chapter13_1.ipynb b/Principles_of_Physics_by_F.J.Bueche/Chapter13_1.ipynb new file mode 100644 index 00000000..c795a68d --- /dev/null +++ b/Principles_of_Physics_by_F.J.Bueche/Chapter13_1.ipynb @@ -0,0 +1,265 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 13:Vibrations and Waves" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex13.1:pg-508## " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Maximum velocity is Vmax= 1.4 Meter/sec\n", + "\n", + "Maximum acceleration is Amax= 4.9 meter/sec**2\n", + "\n", + "Velocity at x=0.1 meters is= 1.36 meters/sec\n", + "\n", + "Acceleration at x=0.1 meters is= -1.23 meters/sec**2\n", + "\n" + ] + } + ], + "source": [ + " import math #Example 13_1\n", + " \n", + " #To find the maximum velocity and acceleration and the same when x=10cm\n", + "xo=0.4 #Units in Meters\n", + "k=24.5 #Units in N/M\n", + "m=2 #Units in Kg\n", + "vmax=xo*(math.sqrt(k/m)) #Units in meters/sec\n", + "print \"Maximum velocity is Vmax=\",round(vmax,1),\" Meter/sec\\n\"\n", + "amax=(k*xo)/m #Units in meter/sec**2\n", + "print \"Maximum acceleration is Amax=\",round(amax,1),\" meter/sec**2\\n\"\n", + "x=0.1 #Units in meters\n", + "v=math.sqrt((k/m)*(xo**2-x**2)) #Units in meters/Sec\n", + "print \"Velocity at x=0.1 meters is= \",round(v,2),\" meters/sec\\n\"\n", + "a=-(k*x)/m #Units in meter/sec**2\n", + "print \"Acceleration at x=0.1 meters is= \",round(a,2),\" meters/sec**2\\n\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex13.2:pg-512## " + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The frequency of vibrations is f= 0.56 Hz\n" + ] + } + ], + "source": [ + " import math #Example 13_2\n", + " \n", + " \n", + " #To find the frequency of the vibrations\n", + "spring=24.5 #Units in N/m\n", + "m=2 #Units in Kg\n", + "f=(1/(2*math.pi))*math.sqrt(spring/m) #Units in Hz\n", + "print \"The frequency of vibrations is f=\",round(f,2),\" Hz\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex13.3:pg-513" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tension required in the string is T= 300.0 N\n" + ] + } + ], + "source": [ + " import math #Example 13_3\n", + " \n", + " \n", + " #To find the tension required in string\n", + "m=0.002 #Units in Kg\n", + "l=0.6 #Units in meters\n", + "v=300 #Units in meters/sec\n", + "T=(m/l)*v**2 #Units in N\n", + "print \"Tension required in the string is T=\",round(T),\" N\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex13.4:pg-514" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The first resonance frequency is F1= 2.0 Hz\n", + "\n", + "The second resonance frequency is F2= 4.0 Hz\n", + "\n", + "The third resonance frequency is F3= 6.0 Hz\n", + "\n" + ] + } + ], + "source": [ + " import math #Example 13_4\n", + " \n", + " \n", + " #To draw a picture on the first three resonance frequencies\n", + "l=6 #Units in meters\n", + "n=1\n", + "lamda1=(2*l)/n #Units in meters\n", + "n=2\n", + "lamda2=(2*l)/n #Units in meters\n", + "n=3\n", + "lamda3=(2*l)/n #Units in meters\n", + "speed=24 #Units in meters/sec\n", + "f1=speed/lamda1 #Units in Hz\n", + "f2=speed/lamda2 #Units in Hz\n", + "f3=speed/lamda3 #Units in Hz\n", + "print \"The first resonance frequency is F1=\",round(f1),\" Hz\\n\"\n", + "print \"The second resonance frequency is F2=\",round(f2),\" Hz\\n\"\n", + "print \"The third resonance frequency is F3=\",round(f3),\" Hz\\n\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex13.5:pg-515 " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The speed of the wave is v= 40.0 meters/sec\n" + ] + } + ], + "source": [ + " import math #Example 13_5\n", + " \n", + " \n", + " #To find the speed of the wave\n", + "l=300*10**-2 #Units in Meters\n", + "lamda3=(l*2)/3 #Units in meters\n", + "f=20 #Units in sec**-1 or Hz\n", + "v=f*lamda3 #Units in meters/sec\n", + "print \"The speed of the wave is v=\",round(v),\" meters/sec\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex13.6:pg-516" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The youngs modulus is Y=\n", + "1.961e+11 N/meters**2\n" + ] + } + ], + "source": [ + " import math #Example 13_6\n", + " \n", + " \n", + " #To find the youngs modulus\n", + "lamda=1.85 #Units in meters\n", + "f=2700 #units in sec**-1\n", + "v=lamda*f #Units in meters/sec\n", + "density=7.86*10**3 #Units in Kg/meter**3\n", + "y=v**2*density #Units in N/meters**2\n", + "print \"The youngs modulus is Y=\"\n", + "print round(y,-8),\"N/meters**2\"\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.11" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |