diff options
Diffstat (limited to 'Principles_Of_Foundation_Engineering_by_B._M._Das')
17 files changed, 5067 insertions, 0 deletions
diff --git a/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter01_2.ipynb b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter01_2.ipynb new file mode 100755 index 00000000..61dc3457 --- /dev/null +++ b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter01_2.ipynb @@ -0,0 +1,249 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:3f5444f542f0d6a3b857b61fbecdc4e8047247ed8828d4cea5a34f91ccdf5eb3"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 1:Geotechnical Properties of Soil"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.1:Pg-10"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 1.1\n",
+ "\n",
+ "V=0.25; # ft^3\n",
+ "W=30.8; #lb\n",
+ "Wd=28.2; # weight dried lb\n",
+ "Gs=2.7;\n",
+ "Gammaw=62.4; #lb/ft^3\n",
+ "Gamma=W/V;\n",
+ "print Gamma,\" is moist unit weight in lb/ft^3\"\n",
+ "w=(W-Wd)/W;\n",
+ "print round(w*100,2),\"is moisture content in %\"\n",
+ "Gammad=Wd/V;\n",
+ "print Gammad, \"is dry unit weight in lb/ft^3\"\n",
+ "Vs=Wd/Gs/Gammaw;\n",
+ "Vv=V-Vs;\n",
+ "e=Vv/Vs;\n",
+ "print round(e,3),\" is void ratio\"\n",
+ "n=e/(1+e);\n",
+ "print round(n,2),\"is porosity\"\n",
+ "Vw=(W-Wd)/Gammaw;\n",
+ "S=Vw/Vv;\n",
+ "print round(S*100,2),\"is saturation in %\"\n",
+ "\n",
+ "# The answers in the book are different due to approximation while here calculations are precise\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "123.2 is moist unit weight in lb/ft^3\n",
+ "8.44 is moisture content in %\n",
+ "112.8 is dry unit weight in lb/ft^3\n",
+ "0.494 is void ratio\n",
+ "0.33 is porosity\n",
+ "50.43 is saturation in %\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.2:Pg-11"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 1.2\n",
+ "\n",
+ "e=0.72;\n",
+ "w=12.0/100; #moisture content\n",
+ "Gs=2.72;\n",
+ "Gammaw=9.81;#kN/m^3\n",
+ "Gammad=Gs*Gammaw/(1+e);\n",
+ "print round(Gammad,2),\"= dry unit weight in kN/m^3\"\n",
+ "Gamma=Gs*Gammaw*(1+w)/(1+e);\n",
+ "print round(Gamma,2),\" = moist unit weight in kN/m^3\"\n",
+ "Gammasat=(Gs+e)*Gammaw/(1+e);\n",
+ "wa=Gammasat-Gamma;#water added\n",
+ "print round(wa,2),\" = water added in kN/m^3\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "15.51 = dry unit weight in kN/m^3\n",
+ "17.38 = moist unit weight in kN/m^3\n",
+ "2.24 = water added in kN/m^3\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.3:Pg-12"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 1.3\n",
+ "from scipy.optimize import fsolve\n",
+ "gmax=17.1; # Gammadmax\n",
+ "Dr=0.7;\n",
+ "w=8.0/100;#moisture content\n",
+ "gmin=14.2; #Gammadmin\n",
+ "def f(x):\n",
+ " return (x-14.2)/(17.1-14.2)*17.1/x-0.7 \n",
+ "x=fsolve(f,16);#solving for gammad\n",
+ "Gamma=x[0]*(1+w);\n",
+ "print round(Gamma,2),\"moist unit weight in kN/m^3\"\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "17.4 moist unit weight in kN/m^3\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.7:Pg-38"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 1.7\n",
+ "import math\n",
+ "#part (a)\n",
+ "e1=0.92;\n",
+ "e2=0.86;\n",
+ "Hc=2.8; # in m\n",
+ "s2=212.0;#sigma2dash Load in kN/m2\n",
+ "s1=140.0;#sigma1dash Load in kN/m2\n",
+ "Cc=(e1-e2)/math.log10(s2/s1);\n",
+ "Sc=Cc*Hc/(1+e1)*math.log10(s2/s1);\n",
+ "print Sc*1000,\"consolidated depth in mm\"\n",
+ "#part (b)\n",
+ "# from Figure (1.21):\n",
+ "Sct=40.0;# in mm\n",
+ "T50=0.197;\n",
+ "t=4.5; # in MIN\n",
+ "Cr=T50*12.7**2.0/t;\n",
+ "U=Sct/Sc*100.0/1000;\n",
+ "H=Hc/2;\n",
+ "Tv=math.pi/4*U**2.0/100**2;\n",
+ "t=Tv*H**2.0/Cr*1000.0**2/60.0/24;\n",
+ "print round(t,1),\" is time required in days\"\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "87.5 consolidated depth in mm\n",
+ "31.6 is time required in days\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex1.8:Pg-42"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 1.8\n",
+ "\n",
+ "Cv=7.061; # in mm^2/min\n",
+ "tc=15*24*60.0;\n",
+ "H=2.8/2*1000.0;\n",
+ "Scmax=87.5; # consolidation\n",
+ "Tc=Cv*tc/H**2;\n",
+ "tv=31.6*24*60;\n",
+ "Tv=Cv*tv/H**2;\n",
+ "#from figure 1.28\n",
+ "Sct=Scmax*0.36;\n",
+ "print Sct,\"is consolidation in 31.6 days in mm\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "31.5 is consolidation in 31.6 days in mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter02_2.ipynb b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter02_2.ipynb new file mode 100755 index 00000000..f284c073 --- /dev/null +++ b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter02_2.ipynb @@ -0,0 +1,95 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:1d0e8ca0a27c4b0cb17e7318d009efc3241a84a31e3f27c8ca705f6cb5276ce4"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 02:Natural Soil Deposits and Subsoil Exploration"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex2.1:Pg-109"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 2.1\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy\n",
+ "import math\n",
+ "Distance=[2.5,5,7.5,10,15,20,25,30,35,40,50];\n",
+ "Time=(10**(-3))*numpy.array([11.2,23.3,33.5,42.4,50.9,57.2,64.4,68.6,71.1,72.1,75.5])\n",
+ "#part1\n",
+ "distance=5.25; # in meter\n",
+ "time=23e-3; # in second\n",
+ "v1=distance/time;\n",
+ "print round(v1,2),\"is speed in m/s\"\n",
+ "#part2\n",
+ "distance=11; # in meter\n",
+ "time=13.5e-3;# in second\n",
+ "v2=distance/time;\n",
+ "print round(v2,2),\" is speed in m/s\"\n",
+ "#part3\n",
+ "distance=14.75;# in meter\n",
+ "time=3.5e-3;# in second\n",
+ "v3=distance/time;\n",
+ "print round(v3,2),\"speed in m/s\"\n",
+ "plt.plot(Distance,Time);\n",
+ "plt.title(\"distance vs time\")\n",
+ "plt.xlabel(\"Distance in m\")\n",
+ "plt.ylabel(\"time in s\")\n",
+ "plt.show()\n",
+ "#part4\n",
+ "xc=10.4;\n",
+ "Ta=65e-3;\n",
+ "Z1=1/2.0*math.sqrt((v2-v1)/(v2+v1))*xc;\n",
+ "print round(Z1,2),\" is thickness of layer 1 in m\"\n",
+ "Z2=1/2.0*(Ta-2*Z1*math.sqrt(v3**2-v1**2)/v3/v1)*v3*v2/math.sqrt(v3**2-v2**2);\n",
+ "print round(Z2,2),\" is thickness of layer 2 in m\"\n",
+ "\n",
+ "# the answers are slightly different in textbook due to approximation while here answers are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "228.26 is speed in m/s\n",
+ "814.81 is speed in m/s\n",
+ "4214.29 speed in m/s\n",
+ "3.9"
+ ]
+ },
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " is thickness of layer 1 in m\n",
+ "12.82 is thickness of layer 2 in m\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter03_2.ipynb b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter03_2.ipynb new file mode 100755 index 00000000..520b4f21 --- /dev/null +++ b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter03_2.ipynb @@ -0,0 +1,412 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:e3a75199f67af72d14bee528a629ae06b2506206625e1ef3a86291ef88f556ed"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 03:Shallow Foundations: Ultimate bearing capacity"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.1:Pg-130"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.1\n",
+ "# From Table 3.1\n",
+ "Nc=17.69;\n",
+ "Nq=7.44;\n",
+ "Ny=3.64;\n",
+ "q=3*115;\n",
+ "Gamma=115.0; #lb/ft**3\n",
+ "c=320;\n",
+ "B=5.0;#ft\n",
+ "FS=4;#factor of safety\n",
+ "qu=1.3*c*Nc+q*Nq+0.4*Gamma*B*Ny\n",
+ "qall=qu/FS; #q allowed\n",
+ "Q=qall*B**2;\n",
+ "print Q,\"is allowable gross load in lb\" \n",
+ "\n",
+ "# the answer is slightly different in textbook due to approximation but here answer are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "67269.0 is allowable gross load in lb\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.2:Pg-134"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.2\n",
+ "\n",
+ "from scipy.optimize import fsolve\n",
+ "import math\n",
+ "Gamma=105.0;#lb/ft**3\n",
+ "Gammasat=118.0;#lb/ft**3\n",
+ "FS=3.0;\n",
+ "pa=2014.125;#lb/ft**2\n",
+ "Depth=[5,10,15,20,25]; # in ft\n",
+ "N60=[4,6,6,10,5]; # in blow/ft\n",
+ "sigmao=[0,0,0,0,0]; # in lb/ft^2\n",
+ "phi=[0,0,0,0,0] # in degree\n",
+ "Gammaw=62.4;\n",
+ "s=0;\n",
+ "print \"depth (ft)\\tN60\\t \\tstress(lb/ft**2)\\t phi(degrees)\\n\"\n",
+ "for i in range(0,5):\n",
+ " sigmao[i]=2*Gamma+(Depth[i]-2)*(Gammasat-Gammaw);\n",
+ " phi[i]=math.sqrt(20*N60[i]*math.sqrt(pa/sigmao[i]))+20;\n",
+ " print \" \",Depth[i],\"\\t \",N60[i],\"\\t\\t \",sigmao[i],\" \\t \\t \\t\",round(phi[i],1),\" \\n\"\n",
+ " s=phi[i]+s\n",
+ "\n",
+ "avgphi=s/(i+1)\n",
+ "\n",
+ "print round(avgphi),\"average friction angle in degrees\"\n",
+ "#using graph get the values of other terms in terms of B and solve for B\n",
+ "def f(x):\n",
+ " return-150000/x**2+5263.9+5527.1/x+228.3*x\n",
+ "x=fsolve(f,4);\n",
+ "print round(x[0],1),\" is the width in ft\"\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "depth (ft)\tN60\t \tstress(lb/ft**2)\t phi(degrees)\n",
+ "\n",
+ " 5 \t 4 \t\t 376.8 \t \t \t33.6 \n",
+ "\n",
+ " 10 \t 6 \t\t 654.8 \t \t \t34.5 \n",
+ "\n",
+ " 15 \t 6 \t\t 932.8 \t \t \t33.3 \n",
+ "\n",
+ " 20 \t 10 \t\t 1210.8 \t \t \t36.1 \n",
+ "\n",
+ " 25 \t 5 \t\t 1488.8 \t \t \t30.8 \n",
+ "\n",
+ "34.0 average friction angle in degrees\n",
+ "4.5 is the width in ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.3:Pg-144"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.3\n",
+ "\n",
+ "import math\n",
+ "phi=25.0; #degrees\n",
+ "Es=620.0; #kN/m**2\n",
+ "Gamma=18.0;#kN/m**2\n",
+ "Df=0.6;# in m\n",
+ "B=0.6; # in m\n",
+ "L=1.2; # in m\n",
+ "Fqc=0.347;\n",
+ "Nq=10.66;\n",
+ "Nc=20.72;\n",
+ "Ngamma=10.88;\n",
+ "mu=0.3; # Poisson's ratio\n",
+ "Fyd=1.0;\n",
+ "c=48.0;#kN/m**2\n",
+ "q=Gamma*(Df+B/2);\n",
+ "Ir=Es/(2*(1+mu)*(c+q*math.tan(phi*math.pi/180.0)));\n",
+ "print round(Ir,2),\" is value of Ir\"\n",
+ "Fcc=Fqc-(1-Fqc)/(Nq*math.tan(phi*math.pi/180.0));\n",
+ "Fcs=1+Nq/Nc*B/L;\n",
+ "Fqs=1+B/L*math.tan(phi*math.pi/180.0);\n",
+ "Fys=1-0.4*B/L;\n",
+ "Fcd=1+0.4*Df/B;\n",
+ "Fqd=1+2.0*math.tan(phi*math.pi/180.0)*(1-math.sin(phi*math.pi/180.0))**2*Df/B;\n",
+ "q1=0.6*18;\n",
+ "Fyc=Fqc;\n",
+ "qu=c*Nc*Fcs*Fcd*Fcc+q1*Nq*Fqs*Fqd*Fqc+1.0/2*Gamma*Ngamma*Fys*Fyd*Fyc;\n",
+ "print round(qu,2),\"is ultimate bearing capacity in kN/m**2\"\n",
+ "\n",
+ "# the answer is slightly different in textbook due to approximation but here answer are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "4.29 is value of Ir\n",
+ "469.24 is ultimate bearing capacity in kN/m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.4:Pg-156"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.4\n",
+ "import math\n",
+ "q=110*4.0; #lb/ft**2\n",
+ "Nq=33.3;\n",
+ "phi=35.0; # in degree\n",
+ "Df=4.0; # in ft\n",
+ "B=6.0; # in ft\n",
+ "Gamma=110.0;#lb/ft**3\n",
+ "Ngamma=48.03; #lb/ft**3\n",
+ "B1=6-2*0.5; # in ft\n",
+ "Fqi=1;\n",
+ "Fyi=1;\n",
+ "Fyd=1;\n",
+ "Fqs=1;\n",
+ "Fys=1;\n",
+ "Fqd=1+2*math.tan(phi*math.pi/180)*(1-math.sin(phi*math.pi/180.0))**2*Df/B;\n",
+ "qu=q*Nq*Fqs*Fqd*Fqi+1/2.0*B1*Gamma*Ngamma*Fys*Fyd*Fyi;\n",
+ "Qult=B1*1*qu;\n",
+ "print round(Qult,2),\" is ultimate bearing capacity in lb/ft\" \n",
+ "print round(Qult/2000.0,2),\" is ultimate bearing capacity in ton/ft\"\n",
+ "\n",
+ "# the answer is slightly different in textbook due to approximation but here answer are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "151738.23 is ultimate bearing capacity in lb/ft\n",
+ "75.87 is ultimate bearing capacity in ton/ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 34
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.5:Pg-158"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.5\n",
+ "\n",
+ "e=0.5; # in ft\n",
+ "B=6; # in ft\n",
+ "k=e/B;\n",
+ "Gamma=110; # in lb/ft^3 \n",
+ "q=440;\n",
+ "print \"get the values of Nqe and Nye from the figure from the value of e/B\"\n",
+ "Nye=26.8;\n",
+ "Nqe=33.4;\n",
+ "Qult=B*1*(q*Nqe+1/2.0*Gamma*B*Nye);\n",
+ "print round(Qult,2),\" is ultimate bearing capacity in lb/ft\"\n",
+ "print round(Qult/2000.0,2),\" is ultimate bearing capacity in ton/ft\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "get the values of Nqe and Nye from the figure from the value of e/B\n",
+ "141240.0 is ultimate bearing capacity in lb/ft\n",
+ "70.62 is ultimate bearing capacity in ton/ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 38
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.6:Pg-159"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.6\n",
+ "\n",
+ "Df=0.7; # in m\n",
+ "#from table\n",
+ "Nq=18.4;\n",
+ "Ny=22.4;\n",
+ "q=12.6;\n",
+ "phi=30; #angle in degree\n",
+ "L=1.5;# in m\n",
+ "Fyd=1;\n",
+ "Gamma=18; # in KN/m^3\n",
+ "L1=0.85*1.5; # in m\n",
+ "L2=0.21*1.5; # in m\n",
+ "B=1.5; # in m\n",
+ "A=1/2.0*(L1+L2)*B;\n",
+ "B1=A/L1; #B'\n",
+ "Fqs=1+B1/L1*math.tan(phi*math.pi/180);\n",
+ "Fys=1-0.4*B1/L1;\n",
+ "Fqd=1+2*math.tan(phi*math.pi/180)*(1-math.sin(phi*math.pi/180))**2*Df/B;\n",
+ "Qult=A*(q*Nq*Fqs*Fqd+1/2.0*Gamma*B1*Ny*Fys*Fyd);\n",
+ "print round(Qult,2),\" is ultimate load in kN\"\n",
+ "\n",
+ "# the answer is slightly different in textbook due to approximation but here answer are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "605.45 is ultimate load in kN\n"
+ ]
+ }
+ ],
+ "prompt_number": 41
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.7:Pg-161"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.7\n",
+ "\n",
+ "e=0.15; # in m\n",
+ "B=1.5; # in m\n",
+ "Fqs=1.0;\n",
+ "L=1.5;# in m\n",
+ "Gamma=18.0; # in KN/m^3\n",
+ "q=0.7*18;\n",
+ "#from table\n",
+ "Nqe=18.4;\n",
+ "Nye=11.58;\n",
+ "Fys=1+(2*e/B-0.68)*(B/L)+(0.43-3/2.0*e/B)*(B/L)**2;\n",
+ "Qult=B*L*(q*Nqe*Fqs+1/2.0*L*Gamma*Nye*Fys);\n",
+ "print round(Qult,2),\"is ultimate load in kN\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "803.03 is ultimate load in kN\n"
+ ]
+ }
+ ],
+ "prompt_number": 45
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex3.8:Pg-163"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 3.8\n",
+ "\n",
+ "q=16.0;# in kN/m^2\n",
+ "Nqei=14.2;\n",
+ "Gamma=16.0 # in kN/m^3\n",
+ "B=1.5;# in m\n",
+ "Nyet=20.0;\n",
+ "Qult=B*(Nqei*q+1/2.0*Gamma*B*Nyet);\n",
+ "print round(Qult,2),\" is ultimate load in kN/m\"\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "700.8 is ultimate load in kN/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 48
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter04_2.ipynb b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter04_2.ipynb new file mode 100755 index 00000000..1d75ed9f --- /dev/null +++ b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter04_2.ipynb @@ -0,0 +1,373 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:7e16b5ec29439d0d7eaa54a0826b64a36c559ed79f17d130c42f4478805c682f"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 04:Ultimate Bearing Capacity of Shallow Foundations: Special Cases"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.1:Pg-176"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 4.1\n",
+ "\n",
+ "FS=4.0; # FOS\n",
+ "q=110*2.0; # in 1b/ft^2\n",
+ "Nq=90.0;\n",
+ "Ny=50.0;\n",
+ "Gamma=110.0; # in 1b/ft^3\n",
+ "m1=0.34; # From Figure 4.6(a)\n",
+ "B=2.5; # in ft\n",
+ "L=2.5; # in ft\n",
+ "H=1.5; # in ft\n",
+ "phi=35; # in degree\n",
+ "m2=0.45; # From Figure 4.6(b)\n",
+ "Fqs=1-0.34*B/L;\n",
+ "Fys=1-0.45*B/L;\n",
+ "qu=q*Nq*Fqs+1/2.0*Gamma*Ny*Fys*B;\n",
+ "Qall=qu*B**2/FS;\n",
+ "print round(Qall,2),\"bearing load in lb\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "26326.95 bearing load in lb\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.2:Pg-177"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 4.2\n",
+ "\n",
+ "FS=3.0; # FOS\n",
+ "cu=72.0;\n",
+ "q=18.0; # in kN/m^3\n",
+ "B=1.0;# in m\n",
+ "H=0.25;# in m\n",
+ "qu=5.14*(1+(0.5*B/H-0.707)/5.14)*cu+q;\n",
+ "qall=qu/FS;\n",
+ "print round(qall,1),\"bearing capacity of soil in kN/m**2\" \n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "160.4 bearing capacity of soil in kN/m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.3:Pg-183"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 4.3\n",
+ "import math\n",
+ "k=0; #B/L;\n",
+ "c2=30;\n",
+ "Gamma=17.5; # in kN/m^3\n",
+ "H=1.5; # in m\n",
+ "Df=1.2; # in m\n",
+ "B=2.0; # in m\n",
+ "Ks=2.5;\n",
+ "phi=40; # in degree\n",
+ "pi=math.pi;\n",
+ "qu=(1+0.2*k)*5.14*c2+(1+k)*Gamma*H**2*(1+2*Df/H)*Ks*math.tan(phi*pi/180)/B+Gamma*H;\n",
+ "Qu=qu*B;\n",
+ "print round(Qu,2),\"is bearing capacity in kN/m\"\n",
+ "print \"there is slight variation due to rounding off error\"\n",
+ "#soil 2\n",
+ "Ny=109.4;\n",
+ "Nq=64.2;\n",
+ "Fqs=1;\n",
+ "Fys=1;\n",
+ "qt=Gamma*Df*Nq*Fqs+1/2.0*Gamma*Ny*Fys*B;\n",
+ "print qt,\"bearing capacity in kN/m**2\"\n",
+ "\n",
+ "# answer in book is different due to approximation"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "575.66 is bearing capacity in kN/m\n",
+ "there is slight variation due to rounding off error\n",
+ "3262.7 bearing capacity in kN/m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.4:Pg-184"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 4.4\n",
+ "\n",
+ "B=1.0; # in m\n",
+ "L=1.5;# in m\n",
+ "c2=48;# in m\n",
+ "ca=108; # in KN/m^2\n",
+ "D=1.0;# in m\n",
+ "H=1.0;# in m\n",
+ "Gamma=16.8; # in KN/m^3\n",
+ "FS=4;\n",
+ "qu=(1+0.2*B/L)*5.14*c2+(1+B/L)*2*ca*H/B+Gamma*D; # in KN/m^2\n",
+ "c1=120.0;\n",
+ "gamma1=16.8; # in kN/m^3\n",
+ "Df=1.0;\n",
+ "qt=(1+0.2*B/L)*5.14*c1+gamma1*Df;\n",
+ "print qt,\"is qt in kN/m**2\"\n",
+ "print \"no need to calculate qt since it is not useful for calculation\"\n",
+ "print qu/FS,\"is allowable shear stress in kN/m**2\"\n",
+ "print qu/FS*1*1.5,\" is allowable load in kN\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "715.84 is qt in kN/m**2\n",
+ "no need to calculate qt since it is not useful for calculation\n",
+ "164.104 is allowable shear stress in kN/m**2\n",
+ "246.156 is allowable load in kN\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.5:Pg-190"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 4.5\n",
+ "\n",
+ "c=50; # in KN/m^2\n",
+ "#from table\n",
+ "Ncq=6.3;\n",
+ "FS=4.0;# FOS\n",
+ "qu=c*Ncq; # in KN/m^2\n",
+ "qall=qu/4;\n",
+ "print qall,\"allowed shear stress in kN/m**2\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "78.75 allowed shear stress in kN/m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.6:Pg-191"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 4.6\n",
+ "\n",
+ "Gamma=16.8; # in kN/m^3\n",
+ "B=1.5;# in m\n",
+ "#from table\n",
+ "Nyq=120.0;\n",
+ "qu=1/2.0*Gamma*B*Nyq; # in KN/m^2\n",
+ "print qu,\" is shear stress in kN/m**2\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1512.0 shear stress in kN/m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.7:Pg-198"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 4.7\n",
+ "import math\n",
+ "phi=35; # in degree\n",
+ "Df=1.5; # in m\n",
+ "B=1.5; # in m\n",
+ "Gamma=17.4; # in kN/m^3\n",
+ "A=math.pi/4*Df**2; # in m^2\n",
+ "m=0.25;\n",
+ "Ku=0.936;\n",
+ "Fq=1+2*(1+m*Df/B)*Df/B*Ku*math.tan(phi*math.pi/180);\n",
+ "Qu=Fq*Gamma*A*Df; # in KN/m^2\n",
+ "print round(Qu,1),\" is bearing capacity in kN\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "121.7 is bearing capacity in kN\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex4.8:pg-198"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "#example 4.8\n",
+ "\n",
+ "\n",
+ "\n",
+ "cu=52; # in kN/m^2\n",
+ "\n",
+ "B=1.5; # in m\n",
+ "\n",
+ "L=3; # in m\n",
+ "\n",
+ "k=0.107*cu+2.5;\n",
+ "\n",
+ "print round(k,2),\" is Df/B of square\" \n",
+ "\n",
+ "A=L*B; # in m^2\n",
+ "\n",
+ "Beta=0.2;\n",
+ "\n",
+ "Gamma=18.9; # in kN/m^3\n",
+ "\n",
+ "Df=1.8; # in m\n",
+ "\n",
+ "Qu=A*(Beta*(7.56+1.44*B/L)*cu+Gamma*Df); # in kN/m^2\n",
+ "\n",
+ "print round(Qu,1),\" is ultimate shear force in kN\"\n",
+ "\n",
+ " \n",
+ "\n",
+ " "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "8.06 is Df/B of square\n",
+ "540.6 is ultimate shear force in kN\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter05_2.ipynb b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter05_2.ipynb new file mode 100755 index 00000000..ca975aae --- /dev/null +++ b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter05_2.ipynb @@ -0,0 +1,550 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:77a2cf465cec464205dc151afe10d9acafa79fe1b46b30f4a468368f8af3f8ea"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter05:Shallow Foundations: Allowable Bearing Capacity and Settlement"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.1:Pg-212"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 5.1\n",
+ "\n",
+ "#first solution\n",
+ "B1=2.5; # in ft\n",
+ "B2=B1;\n",
+ "z=12.5; # in ft\n",
+ "L1=5; # in ft\n",
+ "L2=L1;\n",
+ "m=B1/z;\n",
+ "n=B2/z;\n",
+ "#from table 5.2 of the values using m,n\n",
+ "q=2000; # in lb/ft^2\n",
+ "I=0.0328;\n",
+ "deltasigma=q*4*I; # in lb/ft**2\n",
+ "print round(deltasigma,2),\"change in pressure in lb/ft**2\"\n",
+ "#second solution\n",
+ "Ic=0.131;#from table\n",
+ "deltasigma=q*Ic; # in lb/ft**2\n",
+ "print round(deltasigma,2),\"change in pressure in lb/ft**2\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "262.4 change in pressure in lb/ft**2\n",
+ "262.0 change in pressure in lb/ft**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.2:Pg-215"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 5.2\n",
+ "\n",
+ "qo=100; # in KN/m^2\n",
+ "H1=3; # in m\n",
+ "H2=5; # in m\n",
+ "#from table\n",
+ "IaH2=0.126;\n",
+ "IaH1=0.175;\n",
+ "deltasigma=qo*((H2*IaH2-H1*IaH1)/(H2-H1)); # in kN/m**2\n",
+ "print round(deltasigma,2),\"change in pressure in kN/m**2\"\n",
+ "TS=4*deltasigma; # in kN/m**2\n",
+ "print round(TS,2),\"total change in pressure in kN/m**2\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "5.25 change in pressure in kN/m**2\n",
+ "21.0 total change in pressure in kN/m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.3:Pg-217"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 5.3\n",
+ "H=7;\n",
+ "Gamma=17.5; # in KN/m^3\n",
+ "q0=Gamma*H # in KN/m^2\n",
+ "print q0,\" is pressure change in kN/m**2\"\n",
+ "#part2\n",
+ "#from figure\n",
+ "Ileftside=0.445;\n",
+ "Irightside=0.445;\n",
+ "deltasigma=q0*(Ileftside+Irightside); # in KN/m^2\n",
+ "print round(deltasigma,2),\"is change in stress in kN/m**2\"\n",
+ "#partc\n",
+ "#from figure 5.11\n",
+ "I=0.24;#I'\n",
+ "Dsigma1=43.75*I;#deltasigma1 in KN/m^2\n",
+ "I2=0.495;#I'\n",
+ "Dsigma2=I2*q0;#deltasigma2 in KN/m^2\n",
+ "I3=0.335;#I'\n",
+ "Dsigma3=I3*78.75;#deltasigma3 in KN/m^2\n",
+ "Dsigma=Dsigma1+Dsigma2-Dsigma3; # in KN/m^2\n",
+ "print round(Dsigma,2),\"is total stress increase in A in kN/m**2\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "122.5 is pressure change in kN/m**2\n",
+ "109.03 is change in stress in kN/m**2\n",
+ "44.76 is total stress increase in A in kN/m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.4:Pg-228"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 5.4\n",
+ "\n",
+ "zbar=5;\n",
+ "mus=0.3;\n",
+ "F1=0.641;\n",
+ "F2=0.031;\n",
+ "z1=2.0; # in m\n",
+ "z2=1.0; # in m\n",
+ "z3=2.0; # in m\n",
+ "Es1=10000; # in kN/m**2\n",
+ "Es2=8000; # in kN/m**2\n",
+ "Es3=12000;# in kN/m**2\n",
+ "qo=150; # in KN/m^2\n",
+ "#from table 5.4\n",
+ "If=0.709;\n",
+ "Es=(Es1*z1+Es2*z2+Es3*z3)/zbar; # in kN/m**2\n",
+ "print Es,\" is modulus of elasticity in kN/m**2\"\n",
+ "Is=F1+(2-mus)/(1-mus)*F2;\n",
+ "Sc=qo*(1.0/Es-mus**2.0/Es)*Is*If*2;\n",
+ "Scrigid=0.93*Sc; # in m\n",
+ "print round(Scrigid*1000,2),\"is settlement in mm\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "10400.0 is modulus of elasticity in kN/m**2\n",
+ "12.4 is settlement in mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.5:Pg-234"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 5.5\n",
+ "import math\n",
+ "B=5; # in ft\n",
+ "L=10; # in ft\n",
+ "Ef=2.3e6; # in lb/in^2\n",
+ "Eo=1400.0; # in lb/in^2\n",
+ "k=25.0; # in lb/in^2/ft\n",
+ "t=1.0;\n",
+ "mus=0.3;\n",
+ "Df=5.0; # in ft\n",
+ "qo=5000.0; # in lb/ft^2\n",
+ "Ig=0.69;\n",
+ "Be=math.sqrt(4*B*L/math.pi);\n",
+ "If=math.pi/4+1/(4.6+10*(Ef/(Eo+2*Be/2*k))*(2*t/Be)**3);\n",
+ "Ie=1-1/(3.5*math.exp(1.22*mus-0.4)*(Be/Df+1.6));\n",
+ "Se=qo*Be*Ig*If*Ie/Eo*(1-mus**2)/144; # in ft\n",
+ "print round(Se*12,2),\"settlement in inches\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1.07 settlement in inches\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.6:238"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 5.6\n",
+ "\n",
+ "import math\n",
+ "import numpy\n",
+ "q=3.06; # in lb/in^2\n",
+ "qbar=25; # in lb/in^2\n",
+ "C1=1-0.5*(q/(qbar-q));\n",
+ "Sum=0;\n",
+ "C2=1+0.2*math.log10(10/0.1);\n",
+ "L=[1, 2, 3, 4, 5];\n",
+ "Dz=[48, 48, 96, 48, 144]; # in inch\n",
+ "Es=[750, 1250, 1250, 1000, 2000]; # in lb/in^2\n",
+ "z=[24, 72, 144, 216, 312]; # in inch\n",
+ "Iz=[0.275, 0.425, 0.417, 0.292, 0.125];\n",
+ "k=numpy.zeros(5)\n",
+ "print \"Layer No.\\t deltaz (in)\\t Es(lb/in**2)\\t z to the middle of the layer (in) Iz at the middle of the layer Iz/delta(z) \\n\"\n",
+ "for i in range(0,5):\n",
+ " k[i]=Iz[i]/Es[i]*Dz[i];\n",
+ " print L[i],\"\\t \\t \",Dz[i],\"\\t\\t \",Es[i],\"\\t\\t \",z[i],\" \\t\\t\\t\\t\\t \",Iz[i],\"\\t\\t \",round(k[i],3)\n",
+ " Sum=Sum+k[i];\n",
+ "\n",
+ "Se=C1*C2*(qbar-q)*Sum; # in inch\n",
+ "print round(Se,2),\"settlement in inches\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Layer No.\t deltaz (in)\t Es(lb/in**2)\t z to the middle of the layer (in) Iz at the middle of the layer Iz/delta(z) \n",
+ "\n",
+ "1 \t \t 48 \t\t 750 \t\t 24 \t\t\t\t\t 0.275 \t\t 0.018\n",
+ "2 \t \t 48 \t\t 1250 \t\t 72 \t\t\t\t\t 0.425 \t\t 0.016\n",
+ "3 \t \t 96 \t\t 1250 \t\t 144 \t\t\t\t\t 0.417 \t\t 0.032\n",
+ "4 \t \t 48 \t\t 1000 \t\t 216 \t\t\t\t\t 0.292 \t\t 0.014\n",
+ "5 \t \t 144 \t\t 2000 \t\t 312 \t\t\t\t\t 0.125 \t\t 0.009\n",
+ "2.54 settlement in inches\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.7:Pg-244"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 5.7\n",
+ "\n",
+ "Df=1.0; # in m\n",
+ "B=1.75; # in m\n",
+ "L=1.75 # in m\n",
+ "qnet=120.0; # in KN/m^2\n",
+ "N60=10.0;# in m\n",
+ "alpha1=0.14 # for normally consolated sand\n",
+ "alpha2=1.71/(N60)**1.4 # for normally consolated sand\n",
+ "alpha3=1.0 # for normally consolated sand\n",
+ "Se=0.3*alpha1*alpha2*alpha3*(qnet/100)*((B/0.3)**0.7)*((1.25*(L/B)/(0.25+(L/B))))**2\n",
+ "print round(Se*1000,2),\"settlement in mm\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "11.79 settlement in mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 27
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.8:Pg-245"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 5.8\n",
+ "\n",
+ "Df=1; # in m\n",
+ "B=1.75; # in m\n",
+ "qnet=120; # in KN/m^2\n",
+ "N60=10; # in m\n",
+ "Fd=1+0.33*Df/B;\n",
+ "Se=2*qnet/N60/Fd*(B/(B+0.3))**2; # in mm\n",
+ "print round(Se,2),\"settlement in mm\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "14.71 settlement in mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 29
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.9:Pg-251"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 5.9\n",
+ "\n",
+ "Ny=23.76; \n",
+ "Nq=16.51; \n",
+ "q=3*110.0; # in lb/ft^2\n",
+ "Gamma=110.0; # in lb/ft^3\n",
+ "B=4.0; # in ft\n",
+ "Nqe=0.63*Nq;\n",
+ "Nye=0.4*Ny;\n",
+ "que=q*Nqe+1/2.0*Gamma*B*Nye; # in lb/ft^2\n",
+ "print round(que,2),\" is bearing capacity in lb/ft**2\"\n",
+ "#part 2\n",
+ "V=0.4; # in ft/sec\n",
+ "A=0.32; # given in question\n",
+ "g=9.81; # acceleration constant in m/sec^2\n",
+ "kh=0.26;\n",
+ "k=0.92;#tan(alphae)\n",
+ "Seq=0.174*k*V**2/A/g*kh**-4/A**-4; # in m\n",
+ "print round(Seq,3),\"settelement in m\"\n",
+ "print round(Seq*39.57,2),\"settlement in inches\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "5523.31 is bearing capacity in lb/ft**2\n",
+ "0.019 settelement in m\n",
+ "0.74 settlement in inches\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.10:Pg-256"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 5.10\n",
+ "\n",
+ "import math\n",
+ "Cc=0.32;\n",
+ "Hc=2.5;\n",
+ "eo=0.8;\n",
+ "sigmao=2.5*16.5+0.5*(17.5-9.81)+1.25*(16-9.81); # in kN/m^2\n",
+ "m1=[2, 2, 2];\n",
+ "z=[2, 3.25, 4.5];\n",
+ "n1=[4, 6.5, 9];\n",
+ "Ic=[0.19, 0.085, 0.045];\n",
+ "Dsigma=[28.5, 12.75, 6.75];#deltasigma\n",
+ "print (\"m1\\t z(m)\\t n1\\t Ic\\t Dsigma \\n\");\n",
+ "for i in range(0,3):\n",
+ " print round(m1[i],2),\"\\t \",round(z[i],2),\"\\t \",round(n1[i],2),\"\\t \",round(Ic[i],2),\"\\t \",round(Dsigma[i],2)\n",
+ "\n",
+ " Dsigmaav=1/6.0*(Dsigma[0]+4*Dsigma[1]+Dsigma[2]);\n",
+ " Sc=Cc*Hc/(1+eo)*math.log10((sigmao+Dsigmaav)/sigmao);\n",
+ "print round(Sc*1000,2),\"settlement in mm\"\n",
+ "#partb\n",
+ "B=1.0; # in m\n",
+ "L=2.0; # in m\n",
+ "z=0.5+1.5; # in m\n",
+ "B=B+z; # in m\n",
+ "L=L+z; # in m\n",
+ "A=0.6; # given in question\n",
+ "#from table\n",
+ "kcr=0.78; # by data\n",
+ "Sep=kcr*Sc;\n",
+ "print round(Sep*1000,2),\"settlement in mm\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "m1\t z(m)\t n1\t Ic\t Dsigma \n",
+ "\n",
+ "2.0 \t 2.0 \t 4.0 \t 0.19 \t 28.5\n",
+ "2.0 \t 3.25 \t 6.5 \t 0.09 \t 12.75\n",
+ "2.0 \t 4.5 \t 9.0 \t 0.04 \t 6.75\n",
+ "46.45 settlement in mm\n",
+ "36.23 settlement in mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.11:Pg-262"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 5.11\n",
+ "\n",
+ "import numpy\n",
+ "N60=(3+7+12+12+16)/5.0;\n",
+ "B=[2, 2.25, 2.3]; # in m\n",
+ "Fd=[1.248, 1.22, 1.215];\n",
+ "Qoac=102000*9.81/1000;#actual Qo\n",
+ "Se=25; # in mm\n",
+ "qnet=numpy.zeros(3)\n",
+ "Qo=numpy.zeros(3) # in kN\n",
+ "print \"B(m)\\t Fd\\t qnet(kN/m**2)\\t \\t Qo \\n\"\n",
+ "for i in range(0,3):\n",
+ " qnet[i]=10/0.08*(B[i]+0.3)**2/(B[i])**2*Fd[i]*Se/25;\n",
+ " Qo[i]=qnet[i]*B[i]**2;\n",
+ " print B[i],\"\\t\",Fd[i],\" \\t \",round(qnet[i],2),\"\\t\\t \",Qo[i],\"\\n\"\n",
+ "print int(Qoac),\"value of Qo in kN\"\n",
+ "print \"since Qo is 1000 kN thus B is equal to 2.3 m from the table\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "B(m)\t Fd\t qnet(kN/m**2)\t \t Qo \n",
+ "\n",
+ "2 \t1.248 \t 206.31 \t\t 825.24 \n",
+ "\n",
+ "2.25 \t1.22 \t 195.88 \t\t 991.63125 \n",
+ "\n",
+ "2.3 \t1.215 \t 194.08 \t\t 1026.675 \n",
+ "\n",
+ "1000 value of Qo in kN\n",
+ "since Qo is 1000 kN thus B is equal to 2.3 m from the table\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter06_2.ipynb b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter06_2.ipynb new file mode 100755 index 00000000..d87679c7 --- /dev/null +++ b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter06_2.ipynb @@ -0,0 +1,351 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:0ea06255a04932e0bf9952689cf2f6d919d320d1161a790bec574191c6fbafa1"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter06: Mat Foundations"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.1:Pg-279"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 6.1\n",
+ "\n",
+ "B=30; # in ft\n",
+ "L=45; # in ft\n",
+ "Df=6.5; # in ft\n",
+ "cu=1950;# in lb/ft^2\n",
+ "qunet=5.14*cu*(1+0.195*B/L)*(1+0.4*Df/B);\n",
+ "print int(qunet),\" is allowed force in lb/ft**2\"\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "12307 is allowed force in lb/ft**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.2:Pg-280"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 6.2\n",
+ "\n",
+ "N60=10; # penetration number\n",
+ "Df=2; # in m\n",
+ "B=10.0; # in m\n",
+ "Se=25.0; # in mm\n",
+ "qnetall=N60/0.08*(1+0.33*Df/B)*Se/25;\n",
+ "print qnetall,\" is allowed pressure in kN/m**2\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "133.25 is allowed pressure in kN/m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.3:Pg-283"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 6.3\n",
+ "\n",
+ "cu=2800; # in lb/ft^2\n",
+ "B=60; # in ft\n",
+ "L=100; # in ft\n",
+ "Df=5; # in ft\n",
+ "\n",
+ "Gamma=120; # in lb/ft^3\n",
+ "A=60*100; # in ft^2\n",
+ "Q=25e6; # load in Kip\n",
+ "FS=5.14*cu*(1+0.195*B/L)*(1+0.4*Df/B)/(Q/A-Gamma*Df);\n",
+ "print round(FS,2),\" is factor of safety\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "4.66 is factor of safety\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.4:Pg-284"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 6.4\n",
+ "\n",
+ "import math\n",
+ "Cc=0.28;\n",
+ "Hc=18*12.0;\n",
+ "e0=0.9;\n",
+ "sigmao=11*100+40*(121.5-64)+18/2*(118-62.4); # in lb/ft^2\n",
+ "H2=5+40+18.0;\n",
+ "H1=5+40.0;\n",
+ "qo=3567.0;\n",
+ "#from table\n",
+ "IaH2=0.21;\n",
+ "IaH1=0.225;\n",
+ "Dsigma=qo*((H2*IaH2-H1*IaH1)/(H2-H1))*4;\n",
+ "Scp=Cc*Hc/(1+e0)*math.log10(sigmao/sigmao+Dsigma/sigmao);\n",
+ "print round(Scp,2),\"is settlement in inches\"\n",
+ "\n",
+ "# The answers in the book are different due to approximation while here calculations are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "6.76 is settlement in inches\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.5:Pg-296"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 6.5\n",
+ "import numpy\n",
+ "P=['A','B','C','D','E','F','G','H','I','J','K','L','M','N'];#point\n",
+ "k=1.2*numpy.ones(14);#Q/A\n",
+ "x=[-38,-24, -12, 0, 12, 24, 38, 38, 24, 12, 0, -12, -24, -38];\n",
+ "x1=numpy.zeros(14)\n",
+ "for i in range(0,14):\n",
+ " x1[i]=0.0017*x[i];\n",
+ "y=[48,48,48,48,48,48,48, -48, -48, -48, -48, -48, -48, -48];\n",
+ "y1=numpy.zeros(14)\n",
+ "for i in range(0,14):\n",
+ " y1[i]=-0.0011*y[i];\n",
+ "print \"point\\t Q\\A (kip/ft**2) x(ft)\\t 0.0017x(ft)\\t\\ty(ft)\\t \\t 0.0011y(ft)\\t \\t q(kip/ft**2)\\n\"\n",
+ "q=numpy.zeros(14)\n",
+ "for i in range(0,14):\n",
+ " q[i]=1.2+x1[i]+y1[i];\n",
+ " print P[i],\"\\t \",k[i],\"\\t\\t \",x[i],\"\\t\\t\",round(x1[i],3),\"\\t\\t\",y[i],\"\\t \\t \",round(y1[i],3),\"\\t \\t \\t\",round(q[i],3),\"\\t\\t \\n \"\n",
+ "\n",
+ "print \"the soil pressure at all point is less than the given qallnet=1.5 kip/ft**2\"\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "point\t Q\\A (kip/ft**2) x(ft)\t 0.0017x(ft)\t\ty(ft)\t \t 0.0011y(ft)\t \t q(kip/ft**2)\n",
+ "\n",
+ "A \t 1.2 \t\t -38 \t\t-0.065 \t\t48 \t \t -0.053 \t \t \t1.083 \t\t \n",
+ " \n",
+ "B \t 1.2 \t\t -24 \t\t-0.041 \t\t48 \t \t -0.053 \t \t \t1.106 \t\t \n",
+ " \n",
+ "C \t 1.2 \t\t -12 \t\t-0.02 \t\t48 \t \t -0.053 \t \t \t1.127 \t\t \n",
+ " \n",
+ "D \t 1.2 \t\t 0 \t\t0.0 \t\t48 \t \t -0.053 \t \t \t1.147 \t\t \n",
+ " \n",
+ "E \t 1.2 \t\t 12 \t\t0.02 \t\t48 \t \t -0.053 \t \t \t1.168 \t\t \n",
+ " \n",
+ "F \t 1.2 \t\t 24 \t\t0.041 \t\t48 \t \t -0.053 \t \t \t1.188 \t\t \n",
+ " \n",
+ "G \t 1.2 \t\t 38 \t\t0.065 \t\t48 \t \t -0.053 \t \t \t1.212 \t\t \n",
+ " \n",
+ "H \t 1.2 \t\t 38 \t\t0.065 \t\t-48 \t \t 0.053 \t \t \t1.317 \t\t \n",
+ " \n",
+ "I \t 1.2 \t\t 24 \t\t0.041 \t\t-48 \t \t 0.053 \t \t \t1.294 \t\t \n",
+ " \n",
+ "J \t 1.2 \t\t 12 \t\t0.02 \t\t-48 \t \t 0.053 \t \t \t1.273 \t\t \n",
+ " \n",
+ "K \t 1.2 \t\t 0 \t\t0.0 \t\t-48 \t \t 0.053 \t \t \t1.253 \t\t \n",
+ " \n",
+ "L \t 1.2 \t\t -12 \t\t-0.02 \t\t-48 \t \t 0.053 \t \t \t1.232 \t\t \n",
+ " \n",
+ "M \t 1.2 \t\t -24 \t\t-0.041 \t\t-48 \t \t 0.053 \t \t \t1.212 \t\t \n",
+ " \n",
+ "N \t 1.2 \t\t -38 \t\t-0.065 \t\t-48 \t \t 0.053 \t \t \t1.188 \t\t \n",
+ " \n",
+ "the soil pressure at all point is less than the given qallnet=1.5 kip/ft**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 26
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex6.6:Pg-299"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 6.6\n",
+ "\n",
+ "from scipy.optimize import fsolve\n",
+ "#solving for d\n",
+ "def f(d):\n",
+ " return (96+2*d)*d-2615.1\n",
+ "[x]=fsolve(f,19);\n",
+ "d1=x;\n",
+ "def f(d):\n",
+ " return (96+4*d)*d-6046.4\n",
+ "[x]=fsolve(f,28);\n",
+ "d2=x;\n",
+ "d=max(d2,d1);\n",
+ "d=round(d)\n",
+ "#now coming to design part\n",
+ "h=d+3+1; #in inch\n",
+ "print h,\"is total slab thickness in inches\"\n",
+ "qa=1.082; # in kip/ft^2\n",
+ "qb=1.106; # in kip/ft^2\n",
+ "qm=1.212; # in kip/ft^2\n",
+ "qn=1.188; # in kip/ft^2\n",
+ "q1A=qa/2.0+qb/2.0;\n",
+ "print round(q1A,3),\"is force in strip ABMN in kip/ft**2\"\n",
+ "q2A=qm/2.0+qn/2.0;\n",
+ "print round(q2A,3),\"is force in strip ABMN in kip/ft**2\"\n",
+ "q1=1.106/3+1.127/3+1.147/3;\n",
+ "print round(q1,3),\"is force in strip BCDKLM in kip/ft**2\"\n",
+ "q2=1.253/3+1.233/3+1.212/3;\n",
+ "print round(q2,3),\"is force in strip BCDKLM in kip/ft**2\"\n",
+ "q1=1.147/3+1.167/3+1.188/3;\n",
+ "print round(q1,3),\"is force in strip DEFIJK in kip/ft**2\"\n",
+ "q2=1.294/3+1.273/3+1.253/3;\n",
+ "print round(q2,3),\"is force in strip DEFIJK in kip/ft**2\"\n",
+ "q1=1.188/2+1.212/2;\n",
+ "print round(q1,3),\"is force in strip FGHI in kip/ft**2\"\n",
+ "q2=1.318/2+1.294/2;\n",
+ "print round(q2,3),\" is force in strip FGHI in kip/ft**2\"\n",
+ "#checking for force\n",
+ "#net soil reaction <load \n",
+ "netforce=1/2.0*(1.094+1.2)*14*96+1/2.0*(1.127+1.233)*24*96+1/2.0*(1.167+1.273)*24*96+1/2.0*(1.2+1.306)*14*96;\n",
+ "if netforce<8761 :\n",
+ " print \"forces generated is OK\"\n",
+ "\n",
+ "#checking for reinforcement requirement\n",
+ "Q1=1.4*180+1.7*120;\n",
+ "Q2=1.4*360+1.7*200;\n",
+ "Q3=1.4*400+1.7*240;\n",
+ "Q4=1.4*180+1.7*120;\n",
+ "#solving for a\n",
+ "def f(a):\n",
+ " return 0.9*0.51*a*60*(29-a/2)-95.05*12\n",
+ "[x]=fsolve(f,1.4);\n",
+ "a=x;\n",
+ "As=0.51*a\n",
+ "fy=60000;\n",
+ "print round(As,2),\"is required area in in**2\"\n",
+ "Asmin=200.0/fy*12*29;\n",
+ "print Asmin,\" is minimum reinforcement required in**2/ft\"\n",
+ "print \"use No 9 bars at 10 inch centre to centre\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "33.0 is total slab thickness in inches\n",
+ "1.094 is force in strip ABMN in kip/ft**2\n",
+ "1.2 is force in strip ABMN in kip/ft**2\n",
+ "1.127 is force in strip BCDKLM in kip/ft**2\n",
+ "1.233 is force in strip BCDKLM in kip/ft**2\n",
+ "1.167 is force in strip DEFIJK in kip/ft**2\n",
+ "1.273 is force in strip DEFIJK in kip/ft**2\n",
+ "1.2 is force in strip FGHI in kip/ft**2\n",
+ "1.306 is force in strip FGHI in kip/ft**2\n",
+ "forces generated is OK\n",
+ "0.75 is required area in in**2\n",
+ "1.16 is minimum reinforcement required in**2/ft\n",
+ "use No 9 bars at 10 inch centre to centre\n"
+ ]
+ }
+ ],
+ "prompt_number": 32
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter07_2.ipynb b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter07_2.ipynb new file mode 100755 index 00000000..63b3bc22 --- /dev/null +++ b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter07_2.ipynb @@ -0,0 +1,358 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:6111670c8f96effbf1bc0bc29859353d67e53cd5b906d2b571173d1698f7ba9c"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter07:Lateral earth pressure"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.1:Pg-319"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 7.1\n",
+ "\n",
+ "sigmao=48.0; # in KN/m^2\n",
+ "phi1=30*math.pi/180; # angle\n",
+ "phi2=36*math.pi/180; # angle\n",
+ "Ka1=(math.tan(math.pi/4.0-phi1/2))**2;\n",
+ "Ka2=(math.tan(math.pi/4.0-phi2/2))**2;\n",
+ "sigmaa1=Ka1*sigmao; # in KN/m^2\n",
+ "print round(sigmaa1,2),\"top soil pressure in kN/m**2\"\n",
+ "sigmaa2=Ka2*sigmao; # in KN/m^2\n",
+ "print round(sigmaa2,2),\"bottom soil pressure in kN/m**2\"\n",
+ "Po=1/2.0*3*16+3*12.48+1/3.0*3*(19.65-12.48)+1/2.0*3*29.43;\n",
+ "zbar=(24*(3+3/3.0)+37.44*(3/2.0)+10.76*3/3.0+44.1*3/3.0)/Po;\n",
+ "print round(zbar,2),\"resultant force acting from the bottom in m\"\n",
+ "\n",
+ "# The answers in the book are different due to approximation while here calculations are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "16.0 top soil pressure in kN/m**2\n",
+ "12.46 bottom soil pressure in kN/m**2\n",
+ "1.84 resultant force acting from the bottom in m\n"
+ ]
+ }
+ ],
+ "prompt_number": 34
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.2:Pg-321"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 7.2\n",
+ "\n",
+ "import math\n",
+ "c=14.36;\n",
+ "Gamma=17.4; # in KN/m^3\n",
+ "H=6; # in m\n",
+ "phi=26*math.pi/180;\n",
+ "Ka=(math.tan(math.pi/4-phi/2))**2;\n",
+ "sigma0=Gamma*H*Ka-2*c*math.sqrt(Ka);\n",
+ "Pa=1/2.0*Gamma*H**2*Ka-2*c*H*math.sqrt(Ka);\n",
+ "print round(Pa,2),\"active force before which tensile crack appeared in kN/m\"\n",
+ "zbar=(244.32-323.1)/14.46;\n",
+ "print round(zbar,2),\"the line of action on which net force is acting in m\"\n",
+ "zc=2*c/Gamma/math.sqrt(Ka);\n",
+ "print round(zc,2),\"distance where tensile crack appeared in m\"\n",
+ "Pa=1/2.0*(H-zc)*(Gamma*H*Ka-2*c*math.sqrt(Ka));\n",
+ "print round(Pa,2),\"Active force in tensile crack in kN/m\"\n",
+ "zbar=(H-zc)/3;\n",
+ "print round(zbar,2),\"the line of action on which net force is acting in m\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "14.62 active force before which tensile crack appeared in kN/m\n",
+ "-5.45 the line of action on which net force is acting in m\n",
+ "2.64 distance where tensile crack appeared in m\n",
+ "38.32 Active force in tensile crack in kN/m\n",
+ "1.12 the line of action on which net force is acting in m\n"
+ ]
+ }
+ ],
+ "prompt_number": 30
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.3:Pg-322"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 7.3\n",
+ "import math\n",
+ "pi=math.pi\n",
+ "H=10.0; # in ft\n",
+ "Gamma=110.0; # in lb/ft^3\n",
+ "phi=35*math.pi/180.0; # angle\n",
+ "alpha=15*math.pi/180.0; # angle\n",
+ "theta=10*math.pi/180.0; # angle\n",
+ "zi=math.sin(math.sin(alpha)/math.sin(phi))-alpha+2*theta;\n",
+ "print round(zi*180.0/math.pi,2),\" is zi in degrees\"\n",
+ "Ka=math.cos(alpha-theta)*math.sqrt(1+(math.sin(phi))**2-2*math.sin(phi)*math.sin(zi))/((math.cos(theta))**2*(math.cos(alpha)+math.sqrt((math.sin(phi))**2+((math.sin(alpha))**2))));\n",
+ "Pa=1/2.0*Gamma*H**2*Ka;\n",
+ "print round(Pa,2),\" is rankine earth pressure in lb/ft\"\n",
+ "print \"there is slight error in answer due to rounding off error\"\n",
+ "Beta=math.tan(math.sin(phi)*math.sin(zi)/(1-math.sin(phi)*math.cos(zi)));\n",
+ "print round(Beta*180/pi,2),\" is angle in degrees\"\n",
+ "\n",
+ "# The answers in the book are different due to approximation while here calculations are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "29.99 is zi in degrees\n",
+ "3078.61 is rankine earth pressure in lb/ft\n",
+ "there is slight error in answer due to rounding off error\n",
+ "36.7 is angle in degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.4:Pg-326"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 7.4\n",
+ "\n",
+ "H=4.6; # in m\n",
+ "Gamma=16.5; # in KN/m^3\n",
+ "Ka=0.297;\n",
+ "Po=1/2.0*Gamma*H**2*Ka;\n",
+ "print round(Po,2),\"coulomb active force per unit length in kN/m\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "51.85 coulomb active force per unit length in kN/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.5:Pg-331"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 7.5\n",
+ "\n",
+ "#part(a)\n",
+ "Gamma=105; # in lb/ft^3\n",
+ "H=10; #in ft\n",
+ "Kae=0.474;\n",
+ "k1=0;\n",
+ "Pae=1/2.0*Gamma*H**2*Kae*(1-k1) # in lb/ft\n",
+ "print Pae,\"active force in lb/ft\"\n",
+ "#part(b)\n",
+ "Ka=0.246;\n",
+ "Pa=1/2.0*Gamma*H**2*Ka; # in lb/ft\n",
+ "print Pa,\"active force in lb/ft\"\n",
+ "DPae=Pae-Pa;#deltaPae\n",
+ "zbar=(0.6*H*DPae+H/3*(Pa))/Pae;\n",
+ "print round(zbar,2),\"the distance of resultant force from bottom in ft\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "2488.5 active force in lb/ft\n",
+ "1291.5 active force in lb/ft\n",
+ "4.44 the distance of resultant force from bottom in ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.6:Pg-337"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 7.6\n",
+ "\n",
+ "import math\n",
+ "import numpy\n",
+ "import matplotlib.pyplot as plt\n",
+ "\n",
+ "z=[0, 4, 8, 12, 16];\n",
+ "Gamma=110; # in lb/ft^3\n",
+ "phi=36*math.pi/180;\n",
+ "H=16; # in ft\n",
+ "Sa1=numpy.zeros(5);#sigma(1)\n",
+ "Sa2=numpy.zeros(5);#sigma(2)\n",
+ "Sztr=numpy.zeros(5);#sigma(z)translation\n",
+ "print \"z(ft)\\t sigma(1)(lb/ft**2) \\t sigma(2)(lb/ft**2) \\t sigma(z)translation (lb/ft**2)\\n\"\n",
+ "for i in range(0,5):\n",
+ " Sa1[i]=Gamma*(math.tan(math.pi/4-phi*z[i]/2/H))**2*(z[i]-phi*z[i]**2/H/math.cos(phi*z[i]/H));\n",
+ " Sa2[i]=Gamma*z[i]*(math.cos(phi)/(1+math.sin(phi)))**2;\n",
+ " Sztr[i]=Sa1[i]/2.0+Sa2[i]/2.0;\n",
+ " print round(z[i],2),\"\\t \",round(Sa1[i],2),\"\\t\\t\\t \",round(Sa2[i],2),\"\\t\\t\\t \",round(Sztr[i],2),\"\\n\"\n",
+ "plt.plot(Sztr,z);\n",
+ "plt.title(\"sigma(z)translation vs z\")\n",
+ "plt.ylabel(\"z(ft)\")\n",
+ "plt.xlabel(\"sigma(z)translation (lb/ft**2)\")\n",
+ "plt.show()\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "z(ft)\t sigma(1)(lb/ft**2) \t sigma(2)(lb/ft**2) \t sigma(z)translation (lb/ft**2)\n",
+ "\n",
+ "0.0 \t 0.0 \t\t\t 0.0 \t\t\t 0.0 \n",
+ "\n",
+ "4.0 \t 269.92 \t\t\t 114.23 \t\t\t 192.07 \n",
+ "\n",
+ "8.0 \t 311.08 \t\t\t 228.46 \t\t\t 269.77 \n",
+ "\n",
+ "12.0 \t 233.53 \t\t\t 342.69 \t\t\t 288.11 \n",
+ "\n",
+ "16.0 \t 102.06 \t\t\t 456.92 \t\t\t 279.49 \n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex7.7:Pg-342"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 7.7\n",
+ "import math\n",
+ "Gammasat=18.86; # in KN/m^3\n",
+ "Gammaw=9.81; # in KN/m^3\n",
+ "phi1=math.pi/180*30; # angle 1\n",
+ "phi2=math.pi/180*26; # angle 2\n",
+ "Kp1=(math.tan(math.pi/4+phi1/2))**2;\n",
+ "Kp2=(math.tan(math.pi/4+phi2/2))**2;\n",
+ "#for top soil\n",
+ "c=0;\n",
+ "sigma0=31.44; # in KN/m^2\n",
+ "sigmap=sigma0*Kp1+2*c*math.sqrt(Kp1);\n",
+ "print round(sigmap,2),\"passive pressure for top layer in kN/m**2\"\n",
+ "#for z=2\n",
+ "c=10;\n",
+ "sigma0=31.44; # in KN/m^2\n",
+ "sigmap=sigma0*Kp2+2*c*math.sqrt(Kp2);\n",
+ "print round(sigmap,2),\"passive pressure for z=2m in kN/m**2\"\n",
+ "#for z=3\n",
+ "c=10;\n",
+ "sigma0=15.72*2+(Gammasat-Gammaw)*1; # in KN/m^2\n",
+ "sigmap=sigma0*Kp2+2*c*math.sqrt(Kp2); # in KN/m^2\n",
+ "print round(sigmap,2),\" is passive pressure for z=3m in kN/m**2\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "94.32 passive pressure for top layer in kN/m**2\n",
+ "112.53 passive pressure for z=2m in kN/m**2\n",
+ "135.7 is passive pressure for z=3m in kN/m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter08_2.ipynb b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter08_2.ipynb new file mode 100755 index 00000000..de2367cd --- /dev/null +++ b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter08_2.ipynb @@ -0,0 +1,527 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:ae926d3fc40f9f56d82ee333a9b5a7f719ff4a11c08f89381773660beb02ead3"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter08: Retaining walls"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.1:Pg-366"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 8.1\n",
+ "\n",
+ "import math\n",
+ "import numpy\n",
+ "H1=6*math.tan(10*math.pi/180.0); # in ft\n",
+ "H2=18.0; # in ft\n",
+ "H3=2.75; # in ft\n",
+ "Gamma1=117.0; # in lb/ft^3\n",
+ "Ka=0.294;#from table 7.1\n",
+ "H=H1+H2+H3; # in ft\n",
+ "Pa=1/2.0*Gamma1*H**2*Ka/1000; # in Kip/ft\n",
+ "Pr=Pa*math.sin(10*math.pi/180); # in Kip/ft\n",
+ "Ph=Pa*math.cos(10*math.pi/180); # in Kip/ft\n",
+ "Mo=Ph*H/3.0; # in Kip-ft/ft\n",
+ "Sum=0;#sigma Mr\n",
+ "S=[1, 2, 3, 4, 5];#section\n",
+ "W=[4.05, 1.35, 5.156, 13.01, 1.42];#weight\n",
+ "MA=[5.75, 4.67, 6.25, 9.5, 12.5, 12.5];#Moment Arm\n",
+ "M=numpy.zeros(5)\n",
+ "print \"Section Weight(kip/ft) Moment Arm(ft) Moment (kip-ft/ft)\\n\"\n",
+ "for i in range(0,5):\n",
+ " M[i]=W[i]*MA[i];\n",
+ " Sum=Sum+M[i];\n",
+ " print round(S[i],2),\"\\t \\t \",round(W[i],2),\"\\t \\t \\t\",round(MA[i],2),\"\\t \\t \\t \",round(M[i],2),\"\\n\"\n",
+ "\n",
+ "FSO=Sum/Mo;\n",
+ "if FSO>2 :\n",
+ " print \"safe in overturning with FS=\",round(FSO,2),\"\\n\"\n",
+ "\n",
+ "#for sliding\n",
+ "phi2=18*math.pi/180; # the given angle\n",
+ "V=24.986;\n",
+ "B=12.5;\n",
+ "c2=0.9; # in lb/ft^2\n",
+ "FSS=(V*math.tan(2/3.0*phi2)+B*2/3.0*c2)/Ph;\n",
+ "if FSS>2 :\n",
+ " print \"safe in sliding with FS=\",round(FSS,2),\"\\n\"\n",
+ "\n",
+ "#for bearing\n",
+ "e=B/2.0-(Sum-Mo)/V;\n",
+ "qtoe=V/B*(1+6*e/B); # in Kip/ft^2\n",
+ "Nc=13.1;\n",
+ "Nq=5.26;\n",
+ "Ny=4.07;\n",
+ "D=0.107;\n",
+ "Gamma2=4.0; # in lb/ft^3\n",
+ "B1=B-2*e;#Bdash\n",
+ "q=Gamma2*D # in lb/ft^2\n",
+ "Fcd=1+0.4*D/B1;\n",
+ "Fqd=1+2*math.tan(phi2)*(1-math.sin(phi2))**2*(D/B1);\n",
+ "Fyd=1;\n",
+ "zi=math.tan(Ph/V);\n",
+ "Fci=(1-zi/math.pi*2)**2;\n",
+ "Fqi=Fci;\n",
+ "Fyi=round((1-zi/phi2)**2);\n",
+ "qu=c2*Nc*Fcd*Fci+q*Nq*Fqd*Fqi+1/2.0*Gamma2*B1*Fyd*Fyi;\n",
+ "FSB=qu/qtoe;\n",
+ "if FSB>3 :\n",
+ " print \"bearing is safe with FS=\",round(FSB),\"\\n\\n\"\n",
+ " print \"slight changes due to round off error\"\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Section Weight(kip/ft) Moment Arm(ft) Moment (kip-ft/ft)\n",
+ "\n",
+ "1.0 \t \t 4.05 \t \t \t5.75 \t \t \t 23.29 \n",
+ "\n",
+ "2.0 \t \t 1.35 \t \t \t4.67 \t \t \t 6.3 \n",
+ "\n",
+ "3.0 \t \t 5.16 \t \t \t6.25 \t \t \t 32.23 \n",
+ "\n",
+ "4.0 \t \t 13.01 \t \t \t9.5 \t \t \t 123.59 \n",
+ "\n",
+ "5.0 \t \t 1.42 \t \t \t12.5 \t \t \t 17.75 \n",
+ "\n",
+ "safe in overturning with FS= 3.47 \n",
+ "\n",
+ "bearing is safe with FS= 4.0 \n",
+ "\n",
+ "\n",
+ "slight changes due to round off error\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.2:Pg-369"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 8.2\n",
+ "\n",
+ "c=0.9; # # in lb/ft^2\n",
+ "B=12.5; # in ft\n",
+ "Gamma2=4; # in lb/ft^3\n",
+ "Fcd=1.138;\n",
+ "Fqd=1.107; \n",
+ "Nc=7.5;\n",
+ "Nq=4;\n",
+ "Ny=0;\n",
+ "q=0.428; # in lb/ft^2\n",
+ "qtoe=2.44; # in lb/ft^2\n",
+ "qu=c*Nc*Fcd+q*Nq*Fqd+1/2.0*Gamma2*B*Ny;\n",
+ "FSB=qu/qtoe; # factor of safety\n",
+ "if FSB>3.0 :\n",
+ " print \"safe in bearing with FS=\",round(FSB,2),\"\\n\\n\",\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "safe in bearing with FS= 3.92 \n",
+ "\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.3:Pg-370"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 8.3\n",
+ "import math\n",
+ "import numpy\n",
+ "Msum=0;#sum of moment\n",
+ "Vsum=0;#sum of force\n",
+ "H=15+2.5;#Hdash in ft\n",
+ "phi=30*math.pi/180; # given angle in degree\n",
+ "Gamma=121.0; # in lb/ft^3\n",
+ "Ka=(math.tan(math.pi/4-phi/2))**2;\n",
+ "Pa=1/2.0*Gamma*H**2*Ka/1000; # in Kip/ft\n",
+ "Ph=Pa; # in Kip/ft\n",
+ "Mo=Ph*H/3.0; # in Kip-ft/ft\n",
+ "AN=[1.0,2.0,3.0,4.0,5.0,6.0];#area number\n",
+ "W=[0.9,3.375,5.906,3.863,4.764,2.723];#weight\n",
+ "MA=[1.783,2.8,5.3,5.15,7.05,9.55];#moment arm\n",
+ "\n",
+ "print \"AreaNo \\t Weight(kip/ft) \\t Moment Arm(ft) \\t Moment (kip-ft/ft)\\n\"\n",
+ "M= numpy.zeros(6)\n",
+ "for i in range(0,6):\n",
+ " M[i]=W[i]*MA[i];\n",
+ " Vsum=Vsum+W[i];\n",
+ " Msum=Msum+M[i];\n",
+ " print round(AN[i],2),\"\\t\\t \",round(W[i],2),\"\\t \\t \\t \",MA[i],\"\\t \\t \\t \",M[i],\"\\n\"\n",
+ "\n",
+ "FSO=(Msum)/Mo;\n",
+ "if FSO>2 :\n",
+ " print \"safe in overturning with FS=\",round(FSO,2)\n",
+ "\n",
+ "#for sliding\n",
+ "phi2=20*math.pi/180;\n",
+ "V=Vsum\n",
+ "B=10.3; # in ft\n",
+ "c2=1.0; # in lb/ft^2\n",
+ "FSS=(V*math.tan(2/3.0*phi2)+B*2/3.0*c2)/Ph;\n",
+ "print \"safe in sliding with FS=\",round(FSS,2),\"\\n\"\n",
+ "e=B/2.0-(Msum-Mo)/V;\n",
+ "qtoe=V/B*(1+6*e/B); # in kip/ft**2\n",
+ "print round(qtoe,2),\" is soil pressure at toe in kip/ft**2\"\n",
+ "qheel=V/B*(1-6*e/B); # in kip/ft**2\n",
+ "print round(qheel,2),\" is soil pressure at heel in kip/ft**2\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "AreaNo \t Weight(kip/ft) \t Moment Arm(ft) \t Moment (kip-ft/ft)\n",
+ "\n",
+ "1.0 \t\t 0.9 \t \t \t 1.783 \t \t \t 1.6047 \n",
+ "\n",
+ "2.0 \t\t 3.38 \t \t \t 2.8 \t \t \t 9.45 \n",
+ "\n",
+ "3.0 \t\t 5.91 \t \t \t 5.3 \t \t \t 31.3018 \n",
+ "\n",
+ "4.0 \t\t 3.86 \t \t \t 5.15 \t \t \t 19.89445 \n",
+ "\n",
+ "5.0 \t\t 4.76 \t \t \t 7.05 \t \t \t 33.5862 \n",
+ "\n",
+ "6.0 \t\t 2.72 \t \t \t 9.55 \t \t \t 26.00465 \n",
+ "\n",
+ "safe in overturning with FS= 3.38\n",
+ "safe in sliding with FS= 1.94 \n",
+ "\n",
+ "3.51 is soil pressure at toe in kip/ft**2\n",
+ "0.67 is soil pressure at heel in kip/ft**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 33
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.4:Pg-372"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 8.4\n",
+ "\n",
+ "import math\n",
+ "import numpy\n",
+ "Msum=0;#sum of moment\n",
+ "Vsum=0;#sum of force\n",
+ "H=5+1.5;#Hdash in m\n",
+ "phi=32*math.pi/180 # angle in degree\n",
+ "Gamma=18.5; # in KN/m^3\n",
+ "Ka=0.424;\n",
+ "Pa=1/2.0*Gamma*H**2*Ka; # in KN/m\n",
+ "Ph=Pa*math.cos(15*math.pi/180+2/3.0*phi); # in KN/m\n",
+ "Mo=Ph*H/3.0; # moment\n",
+ "AN=[1,2,3,4,5];#area number\n",
+ "A=[4.36, 3.42, 0.77, 2.8, 2.8];#area\n",
+ "W=[102.81, 80.64, 18.16, 66.02, 93.14];#weight\n",
+ "MA=[2.18, 1.37, 0.98, 1.75, 2.83];#moment arm\n",
+ "print \"AreaNo \\t Area(m**2) \\t Weight(kN/m) \\t Moment Arm(m) \\t Moment (kN-m/m)\\n\"\n",
+ "M= numpy.zeros(5)\n",
+ "for i in range(0,5):\n",
+ " M[i]=W[i]*MA[i];\n",
+ " Vsum=Vsum+W[i];\n",
+ " Msum=Msum+M[i];\n",
+ " print round(AN[i],2),\"\\t\\t \",round(A[i],2),\" \\t \\t\",round(W[i],2),\"\\t \\t \\t \",MA[i],\"\\t \\t \\t \",M[i],\"\\n\"\n",
+ "\n",
+ "FSO=Msum/Mo;\n",
+ "if FSO>2 :\n",
+ " print \"safe in overturning with FS=\",round(FSO,2),\"\\n\"\n",
+ "\n",
+ "#for sliding\n",
+ "phi2=24*math.pi/180;\n",
+ "V=Vsum\n",
+ "B=3.5; # in m\n",
+ "c2=30; # in KN/m^2\n",
+ "Pp=1/2.0*2.37*18*1.5**2+2*30*1.54*1.5;\n",
+ "FSS=(V*math.tan(2/3.0*phi2)+B*2/3.0*c2+Pp)/Ph;\n",
+ "print \"safe in sliding with FS=\",round(FSS,2),\"\\n\"\n",
+ "print \"if Pp is ignored then FS=1.37\"\n",
+ "e=B/2.0-(Msum-Mo)/V;\n",
+ "qtoe=V/B*(1+6*e/B); # in kN/m**2\n",
+ "print round(qtoe,2),\"soil pressure at toe in kN/m**2\"\n",
+ "qheel=V/B*(1-6*e/B); # in kN/m**2\n",
+ "print round(qheel,2),\"soil pressure at heel in kN/m**2\"\n",
+ "print \"there is difference in answer due to rounding off error\"\n",
+ "\n",
+ "# there is difference in answer due to rounding off error\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "AreaNo \t Area(m**2) \t Weight(kN/m) \t Moment Arm(m) \t Moment (kN-m/m)\n",
+ "\n",
+ "1.0 \t\t 4.36 \t \t102.81 \t \t \t 2.18 \t \t \t 224.1258 \n",
+ "\n",
+ "2.0 \t\t 3.42 \t \t80.64 \t \t \t 1.37 \t \t \t 110.4768 \n",
+ "\n",
+ "3.0 \t\t 0.77 \t \t18.16 \t \t \t 0.98 \t \t \t 17.7968 \n",
+ "\n",
+ "4.0 \t\t 2.8 \t \t66.02 \t \t \t 1.75 \t \t \t 115.535 \n",
+ "\n",
+ "5.0 \t\t 2.8 \t \t93.14 \t \t \t 2.83 \t \t \t 263.5862 \n",
+ "\n",
+ "safe in overturning with FS= 2.53 \n",
+ "\n",
+ "safe in sliding with FS= 2.7 \n",
+ "\n",
+ "if Pp is ignored then FS=1.37\n",
+ "195.67 soil pressure at toe in kN/m**2\n",
+ "10.48 soil pressure at heel in kN/m**2\n",
+ "there is difference in answer due to rounding off error\n"
+ ]
+ }
+ ],
+ "prompt_number": 49
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.6:Pg-393"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 8.6\n",
+ "import math\n",
+ "Sv=2; # in ft\n",
+ "Sh=3; # in ft\n",
+ "w=3/12.0; # in inch\n",
+ "fy=35000*144;\n",
+ "FSb=3;\n",
+ "pi=math.pi;\n",
+ "phi=36*pi/180;\n",
+ "Gamma1=105; # in lb/ft^3\n",
+ "H=30;\n",
+ "t=Gamma1*H*Sv*Sh*FSb/w/fy*(math.tan(pi/4-phi/2))**2;\n",
+ "t=t*12; #in inch\n",
+ "print round(t,2),\" is thickness in inches\"\n",
+ "t=t+0.001*50;\n",
+ "print \"so take thickness=0.2 inches\"\n",
+ "#for tie length\n",
+ "z=[5,10,15,20,25,30];\n",
+ "TL=[38.45, 35.89, 33.34, 30.79, 28.25, 25.7];#tie length\n",
+ "print \"z(ft)\\t Tie Length (ft)\\n\"\n",
+ "for i in range(0,6):\n",
+ " print z[i],\"\\t\",TL[i]\n",
+ "\n",
+ "print \"use tie length=40ft\"\n",
+ "#check for over turning\n",
+ "\n",
+ "z=30/3.0;\n",
+ "x1=20;\n",
+ "L=40;\n",
+ "Ka=0.26;\n",
+ "Pa=1/2.0*Gamma1*Ka*H**2; # in kip/ft**2\n",
+ "W1=Gamma1*H*L;\n",
+ "FSO=W1*x1/(Pa*z);\n",
+ "print round(FSO,2),\" is factor of safety is\" \n",
+ "print \"since FS>3 structure is safe\"\n",
+ "#check for sliding\n",
+ "k=2/3.0;\n",
+ "Pa=12285; # in kip/ft**2\n",
+ "FSS=W1*math.tan(k*phi)/Pa;\n",
+ "if FSS>3 :\n",
+ " print \"safe in sliding with FS=\",round(FSS,2)\n",
+ "\n",
+ "#check for bearing\n",
+ "Mr=126000*20; # in lb-ft/ft\n",
+ "Mo=12285*10; # in lb-ft/ft\n",
+ "V=126000;\n",
+ "e=L/2-Mr/V+Mo/V;\n",
+ "L1=L-2*e;#Ldash\n",
+ "c2=1000; # in lb/ft^2\n",
+ "Nc=25.8;\n",
+ "Gamma2=110; # in lb/ft^3\n",
+ "Ny=16.72;\n",
+ "qult=c2*Nc+1/2.0*Gamma2*L1*Ny\n",
+ "sigma0=Gamma1*H; # in lb/ft^2\n",
+ "FSB=qult/sigma0;\n",
+ "if FSB>5 :\n",
+ " print \"bearing is safe with FS=\",round(FSB,2)\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "0.14 is thickness in inches\n",
+ "so take thickness=0.2 inches\n",
+ "z(ft)\t Tie Length (ft)\n",
+ "\n",
+ "5 \t38.45\n",
+ "10 \t35.89\n",
+ "15 \t33.34\n",
+ "20 \t30.79\n",
+ "25 \t28.25\n",
+ "30 \t25.7\n",
+ "use tie length=40ft\n",
+ "20.51 is factor of safety is\n",
+ "since FS>3 structure is safe\n",
+ "safe in sliding with FS= 4.57\n",
+ "safe in bearing with FS= 19.87\n"
+ ]
+ }
+ ],
+ "prompt_number": 56
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex8.7:Pg-397"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 8.7\n",
+ "import math\n",
+ "import numpy\n",
+ "pi=math.pi;\n",
+ "phi=36.0*pi/180;\n",
+ "Ka=(math.tan(pi/4-phi/2))**2;\n",
+ "z=[8.0, 12.0, 16.0]; # in ft\n",
+ "sigmaG=80*12.0; # in lb/ft^2\n",
+ "Gamma1=110.0; # in lb/ft^3\n",
+ "FS=1.5;\n",
+ "Sv=numpy.zeros(3)\n",
+ "for i in range(0,3):\n",
+ " Sv[i]=sigmaG/Gamma1/z[i]/Ka/FS*12.0;\n",
+ " print \"for z=\",z[i],\" ft Sv = \",round(Sv[i],2),\" inches\\n\"\n",
+ "\n",
+ "z=[16.0,56.0,76.0,96.0,112.0,144.0,176.0];\n",
+ "zf=numpy.zeros(7)\n",
+ "k2=numpy.zeros(7)\n",
+ "L=numpy.zeros(7)\n",
+ "for i in range(0,7):\n",
+ " zf[i]=z[i]/12.0;#z in ft\n",
+ "Sv=[1.67,1.67,1.67,1.67,1.33,1.33,1.33];\n",
+ "k=[7.48,5.78,4.93,4.08,3.4,2.04,0.68];#0.51(H-z)\n",
+ "print \"z(in) z(ft) Sv(ft) 0.51(H-z)(ft) 0.438Sv(ft) L(ft) \\n\"\n",
+ "for i in range(0,7):\n",
+ " k2[i]=0.438*Sv[i];#0.438Sv\n",
+ " L[i]=k[i]+k2[i];\n",
+ " print round(z[i],2),\"\\t \\t\",round(zf[i],2),\"\\t \",round(Sv[i],2),\"\\t \\t \",round(k[i],2),\"\\t \\t \\t\",round(k2[i],2),\"\\t \\t \\t \",round(L[i],2)\n",
+ "\n",
+ "Sv=20/12.0;\n",
+ "Ka=0.26;\n",
+ "FS=1.5;\n",
+ "l1=Sv*Ka*FS/4/math.tan(2/3.0*phi);\n",
+ "if l1<3:\n",
+ " l1=3;\n",
+ " print l1,\"length in ft\"\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "for z= 8.0 ft Sv = 33.62 inches\n",
+ "\n",
+ "for z= 12.0 ft Sv = 22.41 inches\n",
+ "\n",
+ "for z= 16.0 ft Sv = 16.81 inches\n",
+ "\n",
+ "z(in) z(ft) Sv(ft) 0.51(H-z)(ft) 0.438Sv(ft) L(ft) \n",
+ "\n",
+ "16.0 \t \t1.33 \t 1.67 \t \t 7.48 \t \t \t0.73 \t \t \t 8.21\n",
+ "56.0 \t \t4.67 \t 1.67 \t \t 5.78 \t \t \t0.73 \t \t \t 6.51\n",
+ "76.0 \t \t6.33 \t 1.67 \t \t 4.93 \t \t \t0.73 \t \t \t 5.66\n",
+ "96.0 \t \t8.0 \t 1.67 \t \t 4.08 \t \t \t0.73 \t \t \t 4.81\n",
+ "112.0 \t \t9.33 \t 1.33 \t \t 3.4 \t \t \t0.58 \t \t \t 3.98\n",
+ "144.0 \t \t12.0 \t 1.33 \t \t 2.04 \t \t \t0.58 \t \t \t 2.62\n",
+ "176.0 \t \t14.67 \t 1.33 \t \t 0.68 \t \t \t0.58 \t \t \t 1.26\n",
+ "3 length in ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 79
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter09_2.ipynb b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter09_2.ipynb new file mode 100755 index 00000000..7d8bec64 --- /dev/null +++ b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter09_2.ipynb @@ -0,0 +1,520 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:a20958eb0a1cf98629a18a836583d76a2fff705e2f3370294ba37a907bebd17b"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter09:Sheet Pile Walls"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.1:Pg-419"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 9.1\n",
+ "\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "sall=30;#sigma allowed\n",
+ "pi=math.pi;\n",
+ "zbar=12.1; # in ft\n",
+ "L1=10.0; # in ft\n",
+ "L2=20.0; #in ft\n",
+ "Gamma=0.12; # in lb/ft^3\n",
+ "Gamma1=0.1294-0.0624; # in lb/ft^3\n",
+ "phi=40*pi/180; # angle given\n",
+ "Ka=(math.tan(pi/4-phi/2))**2;\n",
+ "Kp=(math.tan(pi/4+phi/2))**2;\n",
+ "s1=Gamma*L1*Ka;#sigma1 in Kip/ft\n",
+ "s2=Gamma*L1*Ka+Gamma1*L2*Ka;#sigma2 in Kip/ft\n",
+ "L3=s2/(Gamma1*(Kp-Ka)); # in ft\n",
+ "print round(L3,2),\"is length in ft\"\n",
+ "P=1/2.0*s1*L1+s1*L2+1/2.0*(s2-s1)*L2+1/2.0*s2*L3;# in Kip/ft\n",
+ "print round(P,2),\" is force in kip/ft\"\n",
+ "s5=Gamma*L1*Kp+Gamma1*L2*Kp+Gamma*L3*(Kp-Ka);#sigma5 in Kip/ft\n",
+ "print round(s5,2),\" is pressure in kip/ft\"\n",
+ "A1=s5/(Gamma1*(Kp-Ka)); # in ft^2\n",
+ "A2=8.0*P/(Gamma1*(Kp-Ka)) # in ft^2\n",
+ "A3=6.0*P*(2.0*zbar*(Gamma1*(Kp-Ka))+s5)/(Gamma1*(Kp-Ka))**2.0 # in ft^2\n",
+ "A4=P*(6.0*zbar*s5+4.0*P)/(Gamma1*(Kp-Ka))**2.0 # in ft^2\n",
+ "print \"A1,A2,A3,A4 respectively is \",round(A1,1),round(A2,2),round(A3,2),round(A4,2)\n",
+ "print \"slight error due to rounding off error\"\n",
+ "#part(b)\n",
+ "def f(x):\n",
+ " return x**4+41.7*x**3-270.5*x**2-13363*x-106863\n",
+ "[x]=fsolve(f,20);\n",
+ "D=1.88+x;\n",
+ "print round(D,2),\" is value of D, in ft\"\n",
+ "TL=L1+L2+1.3*D;\n",
+ "print round(TL,2),\" is total length in ft\"\n",
+ "#partc\n",
+ "z=math.sqrt(2*P/(Gamma1*(Kp-Ka)));#zdash\n",
+ "Mmax=P*(z+zbar)-1/2.0*(Gamma1*(Kp-Ka))*z**2*z/3.0;\n",
+ "S=Mmax*12/sall;\n",
+ "print round(S,2),\"is section modulus in in^3/ft\"\n",
+ "\n",
+ "# The answers in the book are different due to approximation while here calculations are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1.88 is length in ft\n",
+ "9.96 is force in kip/ft\n",
+ "12.67 is pressure in kip/ft\n",
+ "A1,A2,A3,A4 respectively is 43.2 271.33 13708.16 110880.89\n",
+ "slight error due to rounding off error\n",
+ "21.68 is value of D, in ft\n",
+ "58.19 is total length in ft\n",
+ "70.06 is section modulus in in^3/ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.2:Pg-426"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 9.2\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "sall=172.5*1000;#sigma allowed in KN/m^2\n",
+ "pi=math.pi;\n",
+ "c=47.0; # in KN/m^2\n",
+ "zbar=1.78; # in m\n",
+ "L1=2.0; #in m\n",
+ "L2=3.0; # in m\n",
+ "Gamma=15.9; # in KN/m^3\n",
+ "Gamma1=19.33-9.81; # in KN/m^3\n",
+ "phi=32*pi/180;\n",
+ "Ka=(math.tan(pi/4-phi/2))**2;\n",
+ "Kp=(math.tan(pi/4+phi/2))**2;\n",
+ "s1=Gamma*L1*Ka;#sigma1 in KN/m^2\n",
+ "s2=Gamma*L1*Ka+Gamma1*L2*Ka;#sigma2 in KN/m^2\n",
+ "P=1/2.0*s1*L1+s1*L2+1/2.0*(s2-s1)*L2; # in kN/ft\n",
+ "print round(P,2),\" is force in kN/m\"\n",
+ "def f(x):\n",
+ " return 127.4*x**2-104.4*x-357.15\n",
+ "[x]=fsolve(f,2);\n",
+ "D=x;\n",
+ "print round(D,2),\" is value of D in m\"\n",
+ "print round(D*1.5,2),\"actual D in m\"\n",
+ "L4=D*(4*c-(Gamma*L1+Gamma1*L2)-P/D)/4/c;\n",
+ "print round(L4,2),\" is length in m\"\n",
+ "s6=4*c-(Gamma*L1+Gamma1*L2);#sigma6 in KN/m^2\n",
+ "s7=4*c+(Gamma*L1+Gamma1*L2);#sigma7 in KN/m^2\n",
+ "z=P/s6;#zdash\n",
+ "Mmax=P*(z+zbar)-1/2.0*s6*z**2; # in KN-m/m\n",
+ "S=Mmax*12.0/sall; # in m^3/m\n",
+ "print round(S,4),\" is section modulus in m**3/m\"\n",
+ "print \"is slight error due to rounding off error\"\n",
+ "\n",
+ "# The answers in the book are different due to approximation while here calculations are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "52.25 is force in kN/m\n",
+ "2.13 is value of D in m\n",
+ "3.2 actual D in m\n",
+ "1.17 is length in m\n",
+ "0.0072 is section modulus in m**3/m\n",
+ "is slight error due to rounding off error\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.3:Pg-433"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 9.3\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "\n",
+ "pi=math.pi;\n",
+ "zbar=2.23; # in m\n",
+ "L1=2.0; # in m\n",
+ "L2=3.0; # in m\n",
+ "Gamma=15.9; # in KN/m^3\n",
+ "Gamma1=19.33-9.81; # in KN/m^3\n",
+ "phi=32*pi/180;\n",
+ "Ka=(math.tan(pi/4-phi/2))**2;\n",
+ "Kp=(math.tan(pi/4+phi/2))**2;\n",
+ "s1=Gamma*L1*Ka;#sigma1 in KN/m^2\n",
+ "s2=Gamma*L1*Ka+Gamma1*L2*Ka;#sigma2 in KN/m^2\n",
+ "L3=s2/(Gamma1*(Kp-Ka)); # in m\n",
+ "print round(L3,2),\"length in m\"\n",
+ "P=1/2.0*s1*L1+s1*L2+1/2.0*(s2-s1)*L2+1/2.0*s2*L3;\n",
+ "print round(P,2),\"force in kN/m\"\n",
+ "def f(x):\n",
+ " return x**3+6.99*x**2-14.55\n",
+ "[x]=fsolve(f,1.4);\n",
+ "D=L3+x;\n",
+ "print round(D,2),\"value of D in m\"\n",
+ "AL=1.4*D;\n",
+ "print round(AL,2),\"actual length in m\"\n",
+ "#partb\n",
+ "L4=1.4;\n",
+ "F=P-1/2.0*(Gamma1*(Kp-Ka)*L4**2);\n",
+ "print round(F,2),\"anchor force in kN/m\"\n",
+ "#partc\n",
+ "def f(x):\n",
+ " return x**2+6.682*x-14.44\n",
+ "[x]=fsolve(f,1.7);\n",
+ "z=x+2;\n",
+ "Mmax=-1/2.0*s1*L1*(x+2/3.0)+F*(x+1)-s1*x*x/2-1/2.0*Ka*Gamma1*x**3/3.0;\n",
+ "print round(Mmax,2),\" is maximum moment in kN-m/m\" \n",
+ "\n",
+ "# The answers in the book are different due to approximation while here calculations are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "0.66 length in m\n",
+ "58.38 force in kN/m\n",
+ "1.98 value of D in m\n",
+ "2.78 actual length in m\n",
+ "30.88 anchor force in kN/m\n",
+ "43.74 is maximum moment in kN-m/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.4:Pg-439"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 9.4\n",
+ "\n",
+ "Gamma=15.9; # in KN/m^3\n",
+ "Gamma1=19.33-9.81; # in KN/m^3\n",
+ "GD=0.23; # from fig. 9.16\n",
+ "CDL1=1.172; # from fig. 9.19\n",
+ "L1=2; # in m\n",
+ "L2=3; # in m\n",
+ "Dth=(L1+L2)*GD*CDL1;\n",
+ "print round(Dth,2),\"theoritical depth in m\"\n",
+ "Dac=1.4*Dth;\n",
+ "print round(Dac,2),\"actual depth in m\"\n",
+ "print \"approximate it as 2 m\"\n",
+ "#part(b)\n",
+ "CFL1=1.073;\n",
+ "GF=0.07;\n",
+ "Gammaa=(Gamma*L1**2+Gamma1*L2**2+2*Gamma*L1*L2)/(L1+L2)**2; # in KN/m^3\n",
+ "F=Gammaa*(L1+L2)**2*GF*CFL1; # in KN/m\n",
+ "print round(F,2),\"force in kN/m\"\n",
+ "#part(c)\n",
+ "GM=0.021; # from fig. 9.18\n",
+ "CML1=1.036; # from fig. 9.21\n",
+ "Mmax=Gammaa*(L1+L2)**3*GM*CML1; # in kN-m/m\n",
+ "print round(Mmax,2),\"maximum moment in kN-m/m\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1.35 theoritical depth in m\n",
+ "1.89 actual depth in m\n",
+ "approximate it as 2 m\n",
+ "25.54 force in kN/m\n",
+ "36.99 maximum moment in kN-m/m\n"
+ ]
+ }
+ ],
+ "prompt_number": 20
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.5:Pg-442"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 9.5\n",
+ "import math\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy\n",
+ "Mmax=43.72; # in kN-m/m\n",
+ "sp=[\"PSA-31\",\"PSA-23\"];#sheet pile\n",
+ "H=[7.9,7.9] # in m\n",
+ "I=[4.41e-6,5.63e-6]; # in m^4/m\n",
+ "p=[0.00466,0.00365];\n",
+ "S=[10.8e-5,12.8e-5]; # in m^3/m\n",
+ "Md=[18.63,22.08]; # kn-m/m\n",
+ "Logp=numpy.zeros(2)\n",
+ "k=numpy.zeros(2)\n",
+ "print \"SheetPile I(m**4/m) H(m) p\\t Logp S(m**3/m) Md(kN-m/m) Md/Mmax \\n\"\n",
+ "for i in range(0,2):\n",
+ " Logp[i]=math.log10(p[i]);\n",
+ " k[i]=Md[i]/Mmax;\n",
+ " print sp[i],\"\\t \",I[i],\" \",H[i],\" \",p[i],\" \",round(Logp[i],2),\" \",S[i],\" \",Md[i],\"\\t \",round(k[i],3)\n",
+ " \n",
+ "\n",
+ "plt.plot(Logp,k);\n",
+ "plt.title(\"Ex9.5\")\n",
+ "plt.xlabel(\"LogP\")\n",
+ "plt.ylabel(\"Md/Mmax\")\n",
+ "plt.show()\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "SheetPile I(m**4/m) H(m) p\t Logp S(m**3/m) Md(kN-m/m) Md/Mmax \n",
+ "\n",
+ "PSA-31 \t 4.41e-06 7.9 0.00466 -2.33 0.000108 18.63 \t 0.426\n",
+ "PSA-23 \t 5.63e-06 7.9 0.00365 -2.44 0.000128 22.08 \t 0.505\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.6:Pg-445"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 9.6\n",
+ "\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "\n",
+ "pi=math.pi;\n",
+ "R=0.6;\n",
+ "L1=10.0; # in ft\n",
+ "L2=20.0; #in ft\n",
+ "Gammasat=122.4; # in lb/ft^3\n",
+ "l1=5; # in ft\n",
+ "Gamma=110.0; # in lb/ft^3\n",
+ "C=0.68;\n",
+ "L=L1+L2; # in ft\n",
+ "Gammaw=62.4; # in lb/ft^3\n",
+ "Gamma1=Gammasat-Gammaw;#gammadash in lb/ft^3\n",
+ "Gammaav=(Gamma*L1+Gamma1*L2)/(L1+L2); # in lb/ft^3\n",
+ "phi=35.0*pi/180;\n",
+ "Ka=(math.tan(pi/4-phi/2))**2;\n",
+ "sa=C*Ka*Gammaav*L;#sigmaa in lb/ft^2\n",
+ "sp=R*sa;#sigmap # in lb/ft^2\n",
+ "def f(x):\n",
+ " return x**2+50*x-1000\n",
+ "[x]=fsolve(f,15);\n",
+ "D=x;#in ft\n",
+ "print round(D,2),\" is depth in ft\"\n",
+ "R=L/D*(L-2*l1)/(2*L+D-2*l1);\n",
+ "print \"value of R=\",round(R,2),\" is OK\\n\"\n",
+ "#partb\n",
+ "F=sa*(L-R*D); # in lb/ft\n",
+ "print round(F,2),\" is Force in lb/ft\"\n",
+ "#partc\n",
+ "Mmax=0.5*sa*L**2*((1-R*D/L)**2-(2*l1/L)*(1-R*D/L)); # in lb-ft/ft\n",
+ "print round(Mmax,2),\"maximum moment lb-ft/ft\"\n",
+ "\n",
+ "# The answers in the book are different due to approximation while here calculations are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "15.31 is depth in ft\n",
+ "value of R= 0.6 is OK\n",
+ "\n",
+ "8821.24 is Force in lb/ft\n",
+ "47693.02 maximum moment lb-ft/ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 31
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.7:Pg-451"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 9.7\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "\n",
+ "pi=math.pi;\n",
+ "zbar=3.2; # in m\n",
+ "c=41; # in KN/m^2\n",
+ "L1=3; # in m\n",
+ "L2=6; # in m\n",
+ "Gamma=17;# in KN/m^3\n",
+ "Gamma1=20-9.81; # in KN/m^3\n",
+ "phi=35*pi/180;\n",
+ "Ka=(math.tan(pi/4-phi/2))**2;\n",
+ "Kp=(math.tan(pi/4+phi/2))**2;\n",
+ "s1=Gamma*L1*Ka;#sigma1 in kN/m**2\n",
+ "s2=Gamma*L1*Ka+Gamma1*L2*Ka;#sigma2 in kN/m**2\n",
+ "P=1/2.0*s1*L1+s1*L2+1/2.0*(s2-s1)*L2;\n",
+ "print round(P,2),\"Force in kN/m\"\n",
+ "s6=4*c-(Gamma*L1+Gamma1*L2);#sigma6 in kN/m**2\n",
+ "print round(s6,2),\"pressure in kN/m**2\"\n",
+ "def f(x):\n",
+ " return x**2+15*x-25.43\n",
+ "[x]=fsolve(f,1.6);\n",
+ "D=x; # in m\n",
+ "print round(D,1),\"depth in m\"\n",
+ "F=P-s6*D; # in kN/m\n",
+ "print round(F,2),\"force in kN/m\"\n",
+ "print \"slight error due to rounding off\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "153.36 Force in kN/m\n",
+ "51.86 pressure in kN/m**2\n",
+ "1.5 depth in m\n",
+ "73.61 force in kN/m\n",
+ "slight error due to rounding off\n"
+ ]
+ }
+ ],
+ "prompt_number": 35
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex9.8:pg-458"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 9.8\n",
+ "import math\n",
+ "pi=math.pi;\n",
+ "Gamma=105.0; # in lb/ft^3\n",
+ "Cov=14.0;\n",
+ "B=15/12.0; # in inch\n",
+ "Ka=0.26;\n",
+ "phi=35.0*pi/180; # given angle in degree\n",
+ "H=37.5/12; # in inch\n",
+ "h=15/12.0; # in inch\n",
+ "t=6/12.0; # in inch\n",
+ "Gc=150.0;#gamma concrete in lb/ft^3\n",
+ "W=H*t*Gc; # in lb/ft\n",
+ "k=4.5;#kp*cos(delta)\n",
+ "Pu=1/2.0*Gamma*H**2*(k-Ka*math.cos(phi)); # in lb/ft\n",
+ "print round(Pu,2),\"force in lb/ft\"\n",
+ "Pus=((Cov+1)/(Cov+H/h))*Pu; # in lb/ft\n",
+ "print round(Pus,2),\"force in lb/ft\"\n",
+ "Be=0.227*(H+h)+B;\n",
+ "Pu=Pus*Be; # in lb/ft\n",
+ "print round(Pu,2),\" is resistance of anchor plate in lb/ft\"\n",
+ "\n",
+ "# The answers in the book are different due to approximation while here calculations are precise"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "2197.94 force in lb/ft\n",
+ "1998.12 force in lb/ft\n",
+ "4482.04 is resistance of anchor plate in lb/ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 37
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter10_2.ipynb b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter10_2.ipynb new file mode 100755 index 00000000..3af11efd --- /dev/null +++ b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter10_2.ipynb @@ -0,0 +1,211 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:54ddb8c76d55d78e9f237ddb7f5823ac10a3585adf1b3932a3b8cc9352fd8e76"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 10:Braced Cuts"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.1: pg-511"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 10.1 : \n",
+ "\n",
+ "Gamma=18.0;\n",
+ "H=7.0;\n",
+ "sigmaa=0.3*Gamma*H;\n",
+ "print\"maximum pressure intensity in kN/m^2 is\",sigmaa ;\n",
+ "#partb\n",
+ "A=54.02;\n",
+ "B1=1.0/2*1.75*37.8+37.8*1.75-A;\n",
+ "B2=45.2;\n",
+ "C=54.02;\n",
+ "s=3.0; #spacing\n",
+ "Pa=C*s;\n",
+ "print \"strut loads in kN is\",Pa\n",
+ "Pb=(B1+B2)*s;\n",
+ "print \"strut loads in kN is\",Pb\n",
+ "Pc=C*s;\n",
+ "print \"strut loads in kN is\", Pc\n",
+ "#partc\n",
+ "Me=45.2*1.196-37.8*1.196*1.196/2;#Me=Mmax\n",
+ "Sall=170e3;#sigmaall\n",
+ "S=Me/Sall;\n",
+ "print \"section modulus in m^3/m is \",round(S,7)\n",
+ "#partd\n",
+ "Mmax=(B1+B2)*s**2.0/8;\n",
+ "S=Mmax/Sall;\n",
+ "print\"section modulus in m^3/m is\",round(S,6)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "maximum pressure intensity in kN/m^2 is 37.8\n",
+ "strut loads in kN is 162.06\n",
+ "strut loads in kN is 271.215\n",
+ "strut loads in kN is 162.06\n",
+ "section modulus in m^3/m is 0.000159\n",
+ "section modulus in m^3/m is 0.000598\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.2:pg-514"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 10.2\n",
+ "\n",
+ "import math\n",
+ "phi=35.0;\n",
+ "Gamma=17.0; # kN/m^3\n",
+ "s=4; #spacing in m\n",
+ "H=9;\n",
+ "Ka=(math.tan(45*(math.pi/180)-35*(math.pi/(180.0*2))))**2\n",
+ "sigma=0.65*Gamma*Ka*H\n",
+ "A=sigma*5*5.0/6;\n",
+ "B1=sigma*5-A;\n",
+ "C=sigma*4*4/6.0; \n",
+ "B2=sigma*s-C;\n",
+ "Pa=A*s;\n",
+ "Pb=(B1+B2)*s;\n",
+ "Pc=C*s;\n",
+ "print \"strut loads at A in kN is\",round(Pa,2)\n",
+ "\n",
+ "print \"strut loads at B in kN is\",round(Pb,2)\n",
+ "\n",
+ "print \"strut loads at C in kN is\",round(Pc,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "strut loads at A in kN is 449.17\n",
+ "strut loads at B in kN is 233.57\n",
+ "strut loads at C in kN is 287.47\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.3:pg-523"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 10.3\n",
+ "\n",
+ "import math\n",
+ "q=0;\n",
+ "Gamma=17; # in KN/m^3\n",
+ "B=3.0 # in meter\n",
+ "L=20; # in meter\n",
+ "c=30;# in KN/m^3\n",
+ "T=1.5;# in meter\n",
+ "H=5.5;# in meter\n",
+ "B1=B/2;#B'\n",
+ "B11=T*math.sqrt(2);#B''\n",
+ "FS=(5.14*c*(1+B11*0.2/L)+c*H/B1)/(Gamma*H+q) # from equation of factor of safety\n",
+ "print\"factor of safety is\",round(FS,2)\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "factor of safety is 2.86\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex10.4:pg-529"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 10.4\n",
+ "\n",
+ "\n",
+ "L1=5; # in meter\n",
+ "L2=4;# in meter\n",
+ "B=5;# in meter\n",
+ "h=4.5;# in meter\n",
+ "icr=1 #\n",
+ "iexit= 0.54*h/L2\n",
+ "FOS=icr/iexit # Factor of safety\n",
+ "print \"The Factory of safety is\",round(FOS,3)\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Factory of safety is 1.646\n"
+ ]
+ }
+ ],
+ "prompt_number": 23
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter11_2.ipynb b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter11_2.ipynb new file mode 100755 index 00000000..0afdb4a0 --- /dev/null +++ b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter11_2.ipynb @@ -0,0 +1,650 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:a4054b3d6b79658bcd763c43dc94ca6de4cd49698c12f912e4c83a9a61f47154"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter11:Pile Foundations"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.1:Pg-532"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 11.1\n",
+ "import math\n",
+ "\n",
+ "#parta\n",
+ "phi=30.0; # angle in degree\n",
+ "pa=2000.0; \n",
+ "q=100*50/1000.0;\n",
+ "Nq=55.0;\n",
+ "Ap=16*16/16/12; # area in ft^2\n",
+ "Qp=Ap*q*Nq; # in kip\n",
+ "qp=0.4*pa*Nq*math.tan(phi*math.pi/180)*Ap; # in lb\n",
+ "print round(Qp,2),\"ultimate load in lb\"\n",
+ "print round(qp/1000,2),\"ultimate load in kip\"\n",
+ "print \"there is change in answer because of calculation mistake in the book\"\n",
+ "\n",
+ "#partb\n",
+ "Nsigma=36;\n",
+ "Ap=16*16.0/12.0/12;\n",
+ "q=110*50.0/1000;\n",
+ "Qp=Ap*q*Nsigma*((1+2.0*(1-math.sin(phi*math.pi/180)))/3); # in kip\n",
+ "print round(Qp,2),\"ultimate load in kip\"\n",
+ "#partc\n",
+ "Nq=18.4;\n",
+ "Qp=Ap*q*Nq; # in kip\n",
+ "print round(Qp,2),\"ultimate load in kip\"\n",
+ "\n",
+ "# ANSWER IN THE BOOK IS WRONG"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "275.0 ultimate load in lb\n",
+ "25.4 ultimate load in kip\n",
+ "there is change in answer because of calculation mistake in the book\n",
+ "234.67 ultimate load in kip\n",
+ "179.91 ultimate load in kip\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.2:Pg-533"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 11.2\n",
+ "\n",
+ "import math\n",
+ "#parta\n",
+ "K=1.3;\n",
+ "f0=0;\n",
+ "Delta=0.8*30; # in ft\n",
+ "D=16.0/12; # in ft\n",
+ "L1=50.0;\n",
+ "p=4*16/12.0; # in ft\n",
+ "Gamma=110/1000.0; # in lb/ft^3\n",
+ "L=15*D; # in ft\n",
+ "sigma=Gamma*L; # in kip/ft^2\n",
+ "f20=K*sigma*math.tan(Delta*math.pi/180); # kip/ft^2\n",
+ "Qs=(f0+f20)/2*(p*L)+f20*p*(L1-L);\n",
+ "print round(Qs,2),\"ultimate load in kip\"\n",
+ "#partb\n",
+ "FS=4; # factor of safety\n",
+ "Qp=56.45/3+234.7/3+179.9/3; # in kip\n",
+ "Qu=Qs+Qp; # in kip\n",
+ "Qall=Qu/FS; # in kip\n",
+ "print round(Qall,2),\"is allowed load in kip\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "271.65 ultimate load in kip\n",
+ "107.17 is allowed load in kip\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.3:Pg-534"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 11.3\n",
+ "import math\n",
+ "K=0.25;\n",
+ "Ap=16*16.0/12/12; # area in ft^2\n",
+ "phi=30*math.pi/180;\n",
+ "Nq=25;\n",
+ "q=110*50.0/1000; # in kip\n",
+ "sigmao=q/2; # in kip/ft^2\n",
+ "p=4*16.0/12; # in ft\n",
+ "L=50; # in ft\n",
+ "FS=4; # factor of safety\n",
+ "Qu=q*Nq*Ap+K*sigmao*math.tan(0.8*phi)*p*L; # in kip\n",
+ "Qall=Qu/FS; # in kip\n",
+ "print round(Qall,1),\"allowed load in kip\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "81.5 allowed load in kip\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.4:Pg-535"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 11.4\n",
+ "\n",
+ "import math\n",
+ "import numpy\n",
+ "FS=4; # factor of safety\n",
+ "Ap=0.1295; # area in m^2\n",
+ "Nc=9;\n",
+ "cu2=100;\n",
+ "Qp=Ap*Nc*cu2; # in kN\n",
+ "D=[5, 10, 30]; # depth in m\n",
+ "avgD=[2.5, 7.5,20.0]; # average depth in m\n",
+ "sigma=[45.0, 110.5, 228.5]; # in KN/m^2\n",
+ "cu=[30, 30, 100]; # in kN/m^2\n",
+ "alpha=[0.6, 0.9, 0.725];\n",
+ "L=[5, 5, 20]; # in m\n",
+ "p=math.pi*0.406;\n",
+ "Qs=0; # in kN\n",
+ "cusig=numpy.zeros(3)\n",
+ "print round(Qp,2),\"bearing capacity in kN\"\n",
+ "print \"depth (m)\\t avg Depth(m)\\t avgVerticalStress(kN/m**2)\\t cu(kN/m**2)\\t cu/sigma\\t alpha\\n\"\n",
+ "for i in range(0,3):\n",
+ " cusig[i]=cu[i]/sigma[i];\n",
+ " Qs=Qs+alpha[i]*cu[i]*L[i]*p;\n",
+ " print round(D[i],2),\"\\t \\t \\t\",round(avgD[i],2),\"\\t \\t\",round(sigma[i],2),\"\\t\\t\\t \",round(cu[i],2),\"\\t \",round(cusig[i],2),\"\\t\\t \",round(alpha[i],2),\"\\n\"\n",
+ "print round(Qs,2),\"bearing capacity in kN\"\n",
+ "#part2\n",
+ "Lambda=0.136;\n",
+ "L=30;\n",
+ "fav=Lambda*(178.48+2*76.7);\n",
+ "Qs2=p*L*fav; # in kN\n",
+ "#part3\n",
+ "fav1=13;\n",
+ "fav2=31.9;\n",
+ "fav3=93.43;\n",
+ "Qs3=p*(fav1*5+fav2*5+fav3*20); # in kN\n",
+ "print round(Qs3,1),\"bearing capacity in kN\"\n",
+ "Qsavg=Qs/3+Qs2/3+Qs3/3; # in kN\n",
+ "Qu=Qp+Qsavg # in kN\n",
+ "Qall=Qu/FS; # in kN\n",
+ "print round(Qall,1),\"allowed bearing capacity in kN\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "116.55 bearing capacity in kN\n",
+ "depth (m)\t avg Depth(m)\t avgVerticalStress(kN/m**2)\t cu(kN/m**2)\t cu/sigma\t alpha\n",
+ "\n",
+ "5.0 \t \t \t2.5 \t \t45.0 \t\t\t 30.0 \t 0.67 \t\t 0.6 \n",
+ "\n",
+ "10.0 \t \t \t7.5 \t \t110.5 \t\t\t 30.0 \t 0.27 \t\t 0.9 \n",
+ "\n",
+ "30.0 \t \t \t20.0 \t \t228.5 \t\t\t 100.0 \t 0.44 \t\t 0.72 \n",
+ "\n",
+ "2136.44 bearing capacity in kN\n",
+ "2669.7 bearing capacity in kN\n",
+ "573.6 allowed bearing capacity in kN\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.5:Pg-538"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 11.5\n",
+ "\n",
+ "import numpy\n",
+ "D=[6, 12, 20]; # depth in m\n",
+ "fc=[34.34, 54.94, 70.63]; # in kN/m**2\n",
+ "alpha=[0.84, 0.71, 0.63];\n",
+ "dL=[6, 6, 8]; # in m\n",
+ "p=4*0.305;\n",
+ "Qs=0;\n",
+ "Q=numpy.zeros(3)\n",
+ "print \" depth(m)\\t fc(kN/m**2)\\t alpha \\t \\t deltaL(m)\\t Q(kN)\\n\"\n",
+ "for i in range (0,3):\n",
+ " Q[i]=alpha[i]*fc[i]*p*dL[i];\n",
+ " Qs=Q[i]+Qs;\n",
+ " print D[i],\"\\t\\t \",fc[i],\"\\t \",alpha[i],\"\\t \",dL[i],\"\\t\\t \",round(Q[i],2)\n",
+ "\n",
+ "print round(Qs),\"bearing force in kN\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " depth(m)\t fc(kN/m**2)\t alpha \t \t deltaL(m)\t Q(kN)\n",
+ "\n",
+ "6 \t\t 34.34 \t 0.84 \t 6 \t\t 211.15\n",
+ "12 \t\t 54.94 \t 0.71 \t 6 \t\t 285.53\n",
+ "20 \t\t 70.63 \t 0.63 \t 8 \t\t 434.29\n",
+ "931.0 bearing force in kN\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex5.6:Pg-545"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 11.6\n",
+ "\n",
+ "import math\n",
+ "L=21; # in m\n",
+ "Qwp=502-350; # in kN\n",
+ "Qws=350; # in kN\n",
+ "Ap=0.1045; # area in m^2\n",
+ "Ep=21e6; # in kN/m^2\n",
+ "epsilon=0.62;\n",
+ "Se1=(Qwp+epsilon*Qws)*L/Ap/Ep; # in m\n",
+ "#part2\n",
+ "Iwp=0.85;\n",
+ "qwp=152/Ap;\n",
+ "Es=25e3; # in kN/m^2\n",
+ "D=0.356; # in m\n",
+ "mus=0.35;\n",
+ "Se2=qwp*D/Es*Iwp*(1-mus**2); # in m\n",
+ "#part3\n",
+ "p=1.168;\n",
+ "Iws=2+0.35*math.sqrt(L/D);\n",
+ "Se3=Qws/p/L*D/Es*Iws*(1-mus**2); # in m\n",
+ "Se=Se1+Se2+Se3; # in m\n",
+ "print round(Se*1000,1),\"settlement in mm\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "19.8 settlement in mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.7:Pg-560"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 11.7\n",
+ "\n",
+ "Ep=207e6; # in kN/m^2\n",
+ "Ip=123e-6; # in m^4\n",
+ "nh=12000; # in kN/m^3\n",
+ "#from table 11.13\n",
+ "xz=0.008;\n",
+ "Ax=2.435;\n",
+ "T=(Ep*Ip/nh)**0.2;\n",
+ "Qg1=xz*Ep*Ip/Ax/T**3;\n",
+ "#part2\n",
+ "Fy=248000;\n",
+ "d1=0.254;\n",
+ "Am=0.772;\n",
+ "Mzmax=Fy*Ip*2/d1; # in Kn-m\n",
+ "Qg2=Mzmax/Am/T; # in kN\n",
+ "if Qg2>Qg1 :\n",
+ " Qg=Qg1;\n",
+ " print round(Qg,2),\"lateral load in kN\"\n",
+ "# there is slight variation in answer in textbook due to approximation"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "53.27 lateral load in kN\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.8:Pg-561"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 11.8\n",
+ "\n",
+ "import math\n",
+ "#part1\n",
+ "Ep=207e6; # in kN/m^2\n",
+ "Ip=123e-6; # in m^4\n",
+ "nh=12000; # in kN/m^3\n",
+ "#from table 11.1a\n",
+ "xo=0.008; # in m\n",
+ "L=25;\n",
+ "Fy=248000; # yield stress in kN/m^2\n",
+ "D=0.254;\n",
+ "Am=0.772;\n",
+ "Gamma=18.0; # in kN/m^3\n",
+ "phi=35; # in angle\n",
+ "Kp=(math.tan(math.pi/4+phi*math.pi/360))**2;\n",
+ "My=Fy*Ip*2/D; # in kN-m\n",
+ "Qug=140*Kp*D**3*Gamma; # in kN\n",
+ "\n",
+ "#part2\n",
+ "Qg1=xo*(Ep*Ip)**0.6*nh**0.4/0.15/L; # in kN\n",
+ "\n",
+ "if Qug>Qg1:\n",
+ " Qg=Qg1;\n",
+ " print round(Qg,2),\"lateral load in kN\"\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "40.2 lateral load in kN\n"
+ ]
+ }
+ ],
+ "prompt_number": 28
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.9:Pg-567"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 11.9\n",
+ "\n",
+ "import math\n",
+ "Wrh=30*12; # in kip-ft\n",
+ "E=0.8;\n",
+ "Wr=7.5; # in kip\n",
+ "S=1/8.0; \n",
+ "C=0.1;\n",
+ "FS=6; # in factor of safety\n",
+ "n=0.4; # Coefficient of restitution\n",
+ "Wp=12/12.0*12/12.0*80*150+550; # in lb\n",
+ "Wp=Wp/1000.0;\n",
+ "Qu=E*Wrh/(S+C)*(Wr+n**2.0*Wp)/(Wr+Wp); # in kip\n",
+ "Qall=Qu/FS; # in kip\n",
+ "print round(Qall),\"allowed bearing capacity in kip\"\n",
+ "#part2\n",
+ "He=30*12.0;\n",
+ "L=80*12.0;\n",
+ "Ap=12*12.0; # area in in^2\n",
+ "Ep=3e6/1000.0; # in kip/in^2\n",
+ "FS=4; # factor of safety\n",
+ "Qu=E*He/(S+math.sqrt(E*He*L/2.0/Ap/Ep)); # in kip\n",
+ "Qall2=Qu/FS; # in kip\n",
+ "print round(Qall2),\"allowed bearing capacity in kip\"\n",
+ "\n",
+ "#partc\n",
+ "a=27;\n",
+ "b=1;\n",
+ "He=30;\n",
+ "FS=3; # factor of safety\n",
+ "Qu=a*math.sqrt(E*He)*(b-math.log10(S)); # in kip\n",
+ "Qall3=Qu/FS; # in kip\n",
+ "print round(Qall3),\"allowed bearing capacity in kip\"\n",
+ "\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "101.0 allowed bearing capacity in kip\n",
+ "104.0 allowed bearing capacity in kip\n",
+ "84.0 allowed bearing capacity in kip\n"
+ ]
+ }
+ ],
+ "prompt_number": 35
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.10:Pg-570"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 11.10\n",
+ "\n",
+ "Hp=350; # in HP\n",
+ "vp=0.0016; # in m/s\n",
+ "Sl=0.762e-3; # in m/cycle\n",
+ "f=115; # in Hz\n",
+ "Qu=(0.746*Hp+98*vp)/(vp+Sl*f); # in kN\n",
+ "print round(Qu),\"pile load capacity in kN\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "2928.0 pile load capacity in kN\n"
+ ]
+ }
+ ],
+ "prompt_number": 38
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.11:Pg-578"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 11.11\n",
+ "\n",
+ "Lg=9.92; # in ft\n",
+ "Bg=7.0; # in ft\n",
+ "n1=3.0;\n",
+ "Nc=8.75;\n",
+ "n2=4.0/1000;\n",
+ "Ap=14.0**2.0/12.0**2;\n",
+ "cup=1775.0;\n",
+ "a1=0.4;#alpha1\n",
+ "p=4*14.0/12.0;\n",
+ "cu1=1050.0; # in lb/ft^2\n",
+ "L1=15.0;\n",
+ "a2=0.54;#alpha2\n",
+ "cu2=1775.0; # in lb/ft^2\n",
+ "L2=45.0;\n",
+ "FS=4; # factor of safety\n",
+ "Qu=n1*n2*(9*Ap*cup+a1*p*cu1*L1+a2*p*cu2*L2); # in kip\n",
+ "Qu2=Lg*Bg*cup*Nc+2*(Lg+Bg)*(cu1*L1+cu2*L2); # in kip\n",
+ "print round(Qu2/1000),\"load in kip\"\n",
+ "Qall=Qu/FS; # in kip\n",
+ "print round(Qall),\"allowed load in kip\"\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "4314.0 load in kip\n",
+ "757.0 allowed load in kip\n"
+ ]
+ }
+ ],
+ "prompt_number": 42
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex11.12:Pg-583"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 11.12\n",
+ "\n",
+ "import math\n",
+ "z1=21/2.0; # in ft\n",
+ "Lg=9.0; # in ft\n",
+ "Bg=6.0;# in ft\n",
+ "Qg=500*1000.0; # in kip\n",
+ "Cc1=0.3;\n",
+ "Cc2=0.2;\n",
+ "Cc3=0.25;\n",
+ "H2=12;\n",
+ "H3=6;\n",
+ "H1=21;\n",
+ "e1=0.82;\n",
+ "e2=0.7;\n",
+ "e3=0.75;\n",
+ "s1=Qg/(Lg+z1)/(Bg+z1); #sigma1 in lb/ft^3\n",
+ "s2=500*1000/(9+27)/(6+27);#sigma2 in lb/ft^3\n",
+ "s3=500*1000/(9+36)/(6+36);#sigma3 in lb/ft^3\n",
+ "ss1=6*105+(27+21/2)*(115-62.4);#sigmadash1 in lb/ft^3\n",
+ "ss2=6*105+(27+21)*(115-62.4)+(120-62.4)*6;#sigmadash2 in lb/ft^3\n",
+ "ss3=6*105+48*(115-62.4)+12*(120-62.4)+3*(122-62.4);#sigmadash3 in lb/ft^3\n",
+ "sc1=Cc1*H1/(1+e1)*math.log10((ss1+s1)/ss1); # in inch\n",
+ "sc2=Cc2*H2/(1+e2)*math.log10((ss2+s2)/ss2); # in inch\n",
+ "sc3=Cc3*H3/(1+e3)*math.log10((ss3+s3)/ss3); # in inch\n",
+ "sc=sc1+sc2+sc3; # in inch\n",
+ "print round(sc*12,1),\"total settlement in inch\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "9.6 total settlement in inch\n"
+ ]
+ }
+ ],
+ "prompt_number": 45
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter12_2.ipynb b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter12_2.ipynb new file mode 100755 index 00000000..fcc14387 --- /dev/null +++ b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter12_2.ipynb @@ -0,0 +1,443 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:1439e2e46e40a0d47bd1c7e06a03c417c0e1f55ad415a0af82536f86f7ecfea9"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter12:Drilled-Shaft Foundations"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.1:Pg-609"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 12.1\n",
+ "\n",
+ "import math\n",
+ "Ap=math.pi/4*1.75**2; # area in m^2\n",
+ "FS=4; # factor of safety\n",
+ "Nq=37.75; \n",
+ "L=8;\n",
+ "Es=50000.0;\n",
+ "mus=0.265;\n",
+ "pu=100.0;\n",
+ "Db=1.75; # in m\n",
+ "q=6*16.2+2*19.2;\n",
+ "phi=36*math.pi/180.0;\n",
+ "Fqs=1+math.tan(phi);\n",
+ "Fqd=1+2*math.tan(phi)*(1-math.sin(phi))**2*math.atan(L/Db);\n",
+ "Ir=Es/(2*(1+mus)*q*math.tan(phi));\n",
+ "delta=0.005*(1-phi/20*180/math.pi+25/20.0)*q/pu;\n",
+ "Irr=Ir/(1+Ir*delta);\n",
+ "Fqc=math.exp(-3.8*math.tan(phi)+(3.07*math.sin(phi)*math.log10(2*Irr))/(1+math.sin(phi)));\n",
+ "Qp=Ap*(q*(Nq-1)*Fqs*Fqd*Fqc);\n",
+ "Qpall=Qp/FS;\n",
+ "print round(Qpall,2),\"allowed load in kN\"\n",
+ "print \"due to rounding off error there is slight change in answer\"\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "6648.7 allowed load in kN\n",
+ "due to rounding off error there is slight change in answer\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.2:Pg-610"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 12.2\n",
+ "import math\n",
+ "Ap=math.pi/4*1.75**2; # area in m^2\n",
+ "q=135.6; \n",
+ "w=0.83;\n",
+ "FS=4; # factor of safety\n",
+ "phi=36; # given angle\n",
+ "Nq=0.21*math.exp(0.17*phi);\n",
+ "Qp=Ap*q*(w*Nq-1); # in kN\n",
+ "Qpall=Qp/FS; # in kN\n",
+ "print round(Qpall),\"allowed load in kN\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "6383.0 allowed load in kN\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.3:Pg-611"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 12.3\n",
+ "\n",
+ "import math\n",
+ "Ap=math.pi/4*1.5**2; # area in m^2\n",
+ "Db=1.5; # in m\n",
+ "z=3.0;\n",
+ "p=math.pi*1;\n",
+ "Li=6.0;\n",
+ "N60=30.0;\n",
+ "sigmazi=16*z;\n",
+ "Beta=2.0-0.15*z**0.75;\n",
+ "fi=Beta*sigmazi; # in kN/m^2\n",
+ "qp=57.5*N60; # in kN/m^2\n",
+ "qpr=1.27/Db*qp; # in kN/m^2\n",
+ "Qunet=qpr*Ap+fi*p*Li; # in kN\n",
+ "print round(Qunet,2),\"allowed load in kN\"\n",
+ "#part b\n",
+ "k1=0.315; #from table\n",
+ "k2=12.0/1.5/1000*100.0;\n",
+ "Qunet2=qpr*Ap*k1+fi*p*Li*k2; # in kN\n",
+ "print round(Qunet2,2),\"allowed load in kN\"\n",
+ "\n",
+ "# the answer is slightly different in textbook due to approximation"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "4081.11 allowed load in kN\n",
+ "2013.14 allowed load in kN\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.4:Pg-617"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 12.4\n",
+ "\n",
+ "Nc=9;\n",
+ "Ap=math.pi/4*1.5**2; # area in m^2\n",
+ "cu=105; # in kN/m^2\n",
+ "Qpnet=Ap*cu*Nc; # in kN\n",
+ "print round(Qpnet),\"net ultimate bearing point capacity in kN\"\n",
+ "#part2\n",
+ "alpha=0.4;\n",
+ "Ds=1.5; # in m \n",
+ "p=math.pi*Ds;\n",
+ "Qs=alpha*p*(50*8+105*3); # in kN\n",
+ "print int(Qs),\"skin resistance in kN\"\n",
+ "#part3\n",
+ "FS=3; # factor of safety\n",
+ "Qu=Qpnet/FS+Qs/FS; # in kN\n",
+ "print round(Qu,2),\"working load in kN\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1670.0 net ultimate bearing point capacity in kN\n",
+ "1347 skin resistance in kN\n",
+ "1005.9 working load in kN\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.5:Pg-618"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 12.5\n",
+ "\n",
+ "import math\n",
+ "cub=3000;\n",
+ "L=20+5; # in ft\n",
+ "Db=4; # in ft\n",
+ "Ap=math.pi/4*Db**2; # area in ft^2\n",
+ "alpha=0.55;\n",
+ "cu1=800; # in lb/ft^2\n",
+ "L1=7; # in ft\n",
+ "L2=5.5; # in ft\n",
+ "cu2=1200; # in lb/ft^2\n",
+ "p=math.pi*2.5;\n",
+ "k=alpha*p*(cu1*L1+cu2*L2);#f*p*deltaLi\n",
+ "j1=6*cub*(1+0.2*L/Db);\n",
+ "j2=9*cub;\n",
+ "qp=min(j1,j2);\n",
+ "Qu=k/1000+qp*Ap/1000; # in kip\n",
+ "print round(Qu),\"allowed load in kip\"\n",
+ "#part b\n",
+ "k1=0.57; #from table\n",
+ "k2=0.89;\n",
+ "Qunet2=qp*Ap*k1+k*k2; # in kip\n",
+ "print round(Qunet2/1000,2),\"allowed load in kip\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "392.0 allowed load in kip\n",
+ "240.3 allowed load in kip\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.6:Pg-621"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 12.6\n",
+ "\n",
+ "import math\n",
+ "Qws=1005-250; # in kN\n",
+ "Qwp=250; # in kN\n",
+ "epsilon=0.65; \n",
+ "L=11; # in m\n",
+ "Ds=1.5; # in m\n",
+ "Es=14000; # in kN/m^2\n",
+ "Ap=math.pi/4*1.5**2; # area in m^2\n",
+ "Ep=21e6; # in kN/m^2\n",
+ "Cp=0.04; # in kN/m^2\n",
+ "Db=1.5;\n",
+ "mus=0.3;\n",
+ "p=math.pi*1.5;\n",
+ "Nc=9;\n",
+ "qp=105*Nc; # in kN/m^2\n",
+ "se1=(Qwp+epsilon*Qws)*L/(Ap*Ep); # in m \n",
+ "se2=Qwp*Cp/(Db*qp); # in m\n",
+ "Iws=2+0.35*math.sqrt(L/Ds);\n",
+ "se3=Qws/p/L*Ds/Es*(1-mus**2)*Iws; # in m\n",
+ "se=se1+se2+se3; # in m\n",
+ "print round(se*1000,2),\" is net settlement in mm\"\n",
+ "\n",
+ "# the answer is slightly different in textbook due to approximation"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "11.46 is net settlement in mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.7:Pg-628"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 12.7\n",
+ "\n",
+ "import math\n",
+ "import numpy\n",
+ "from scipy.optimize import fsolve\n",
+ "Ds=1.0;\n",
+ "Ep=22e6;\n",
+ "Ri=1.0;\n",
+ "cu=100.0;\n",
+ "Ip=math.pi*Ds**4/64.0;\n",
+ "Qc=7.34*Ds**2*Ep*Ri*(cu/Ep/Ri)**0.6;\n",
+ "print round(Qc,2),\"bearing force in kN\"\n",
+ "Mc=3.86*Ds**3*Ep*Ri*(cu/Ep/Ri)**0.6;\n",
+ "print round(Mc,2),\"bearing moment in kNm\"\n",
+ "#from figure\n",
+ "xoQM=0.0046*1;\n",
+ "xoMQ=0.0041*1;\n",
+ "xo=0.5*(xoQM+xoMQ);\n",
+ "print round(xo*1000,2),\"net ground line deflection in mm\"\n",
+ "#partb\n",
+ "Ip=0.049;\n",
+ "Qg=150.0;\n",
+ "Mg=200.0;\n",
+ "def f(T):\n",
+ " return 338e-6*T**3+300.6e-6*T**2-0.00435\n",
+ "[x]=fsolve(f,2);\n",
+ "T=x;\n",
+ "k=[0, 0.4, 0.6, 0.8, 1.0, 1.1, 1.25];#z/T\n",
+ "Am=[0, 0.36, 0.52, 0.63, 0.75, 0.765, 0.75];\n",
+ "Bm=[1.0, 0.98, 0.95, 0.9, 0.845, 0.8, 0.73];\n",
+ "print \"z/T\\t Am\\t Bm\\t Mz(kN-m)\\n\"\n",
+ "Mz=numpy.zeros(7)\n",
+ "for i in range(0,7):\n",
+ " Mz[i]=Am[i]*Qg*T+Bm[i]*Mg;\n",
+ " print k[i],\"\\t\",round(Am[i],2),\"\\t\",round(Bm[i],2),\"\\t\",round(Mz[i],2)\n",
+ "\n",
+ "print round(1*T,2),\"depth in m\"\n",
+ "#partc\n",
+ "Mmax=400;\n",
+ "sigma=Mmax*Ds/2/Ip;\n",
+ "print round(sigma,2),\"tensile stress in kN/m**2\"\n",
+ "#partd\n",
+ "#from figure\n",
+ "k=8.5;\n",
+ "L=k*1;\n",
+ "print L,\"length in m\"\n",
+ "\n",
+ "# the answer is slightly different in textbook due to approximation\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "100615.56 bearing force in kN\n",
+ "52912.27 bearing moment in kNm\n",
+ "4.35 net ground line deflection in mm\n",
+ "z/T\t Am\t Bm\t Mz(kN-m)\n",
+ "\n",
+ "0 \t0.0 \t1.0 \t200.0\n",
+ "0.4 \t0.36 \t0.98 \t308.4\n",
+ "0.6 \t0.52 \t0.95 \t352.35\n",
+ "0.8 \t0.63 \t0.9 \t376.69\n",
+ "1.0 \t0.75 \t0.84 \t403.16\n",
+ "1.1 \t0.77 \t0.8 \t398.84\n",
+ "1.25 \t0.75 \t0.73 \t380.16\n",
+ "2.08 depth in m\n",
+ "4081.63 tensile stress in kN/m**2\n",
+ "8.5 length in m\n"
+ ]
+ }
+ ],
+ "prompt_number": 31
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex12.8:Pg-634"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 12.8\n",
+ "\n",
+ "qu=3000; # lb/in^2\n",
+ "Ds=3*12; #in inch\n",
+ "L=15*12; # in inch\n",
+ "FS=3; # factor of safety\n",
+ "Ecore=0.36e6; # in lb/in^2\n",
+ "f=min(2.5*qu**0.5,0.15*qu);\n",
+ "Qu=math.pi*Ds*L*f/1000; # in kip\n",
+ "Emass=Ecore*(0.266*80-1.66); # in lb/in^2\n",
+ "Ec=17.9*Emass; # in lb/in^2\n",
+ "Ac=math.pi/4*Ds**2; # area in in^2\n",
+ "If=0.35;\n",
+ "se=Qu*L/Ac/Ec+Qu*If/Ds/Emass;\n",
+ "Qall=Qu/FS; # in kip\n",
+ "print round(Qall),\"allowed load in kip\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "929.0 allowed load in kip\n"
+ ]
+ }
+ ],
+ "prompt_number": 35
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter13_2.ipynb b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter13_2.ipynb new file mode 100755 index 00000000..bfb80602 --- /dev/null +++ b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter13_2.ipynb @@ -0,0 +1,176 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:549425d7a43cc856ebd1610c783821836546fd833bb34512fcafdb71f662b655"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter13:Foundations on Difficult Soils"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13.1:Pg-653"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 13.1\n",
+ "\n",
+ "Sw=1;\n",
+ "Z=2; # in m\n",
+ "deltaSf=0.0033*Z*Sw*1000; # in mm\n",
+ "print deltaSf,\"free surface swell in mm\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "6.6 free surface swell in mm\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13.2:Pg-13.2"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 13.2\n",
+ "\n",
+ "#from figure 13.11\n",
+ "import matplotlib.pyplot as plt\n",
+ "%matplotlib inline\n",
+ "import numpy\n",
+ "deltaS=1/100.0*1/2.0*(0.55+0+0.55+1.2+1.2+2+2+3);\n",
+ "print deltaS*1000,\"total swell in mm\"\n",
+ "#partb\n",
+ "D=numpy.array([5.2, 4.2, 3.2, 2.2, 1.2]);\n",
+ "deltaS=numpy.array([0, 0.00275, 0.0115, 0.0275, 0.0525]);\n",
+ "print \"depth(m)\\t total swell (m) \\n\"\n",
+ "for i in range (0,5):\n",
+ " print D[i],\"\\t \",deltaS[i],\" \\n\",\n",
+ "\n",
+ "plt.plot(deltaS*1000,D);\n",
+ "plt.title(\"depth vs total swell\")\n",
+ "plt.xlabel(\"total swell (m)\")\n",
+ "plt.ylabel(\"depth (m)\")\n",
+ "plt.show()\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "52.5 total swell in mm\n",
+ "depth(m)\t total swell (m) \n",
+ "\n",
+ "5.2 \t 0.0 \n",
+ "4.2 \t 0.00275 \n",
+ "3.2 \t 0.0115 \n",
+ "2.2 \t 0.0275 \n",
+ "1.2 \t 0.0525 \n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYQAAAEZCAYAAACXRVJOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xm81VW9//HXm8EJ50wcQHHMzAlNnGWjpIKIWl4nfk73\nd9PS0rrmVN1E8+q1btchK72paYaaSaEmznoQs8ABFEVMBXMGzQmkFORz/1jfI9vNGfYZvmdP7+fj\nsR9993ev/f1+1pHO56y1vmstRQRmZma9Kh2AmZlVBycEMzMDnBDMzCzjhGBmZoATgpmZZZwQzMwM\ncEKwHiTpGkk/zOnaYyVdl8e1K0XSsZImV+jen/w8JQ2StESSf1/UOf8Htp4U2atLJBUkvdzCtXtU\nRxNcngkxB56g1ICcEKynqcau26j882xATgiWG0mDJT0u6X1JNwIrlHw+StJ0Se9I+pOkrYs+e1HS\nmZKelvS2pKslLS+pH3AHsJ6k+dm11yX9RbucpGuzc09J2qGVuH4h6ccl526R9K3s+AxJr2TXmSVp\nrxaucTxwJHB6Fsct2fnPS2rK6vSUpAPaKX+mpOezez0t6aAyf7YrSPqNpLeye02VtLakYZKeLCp3\nj6SpRe8nSxqdHa8nabykeZJmS/pmOfe2OhYRfvnV7S9gOeBvwClAb+ArwEfAudnng4G5wI6kv0aP\nBuYAfbPPXwSeBNYH1gAeAn6YfTYUeLnkfmOBfwD7Zdc7H/hzK7HtAbxU9H4NYCGwDvA54CVgneyz\nDYCNW7nOr5rrk73vCzwPnAn0AYYB7wObt1Q+O3dI0b0OBRYA/bP3xwKTW7n3CcCtpCSr7Oe5CrBi\n9nNYM4tnLvAy0C/7bGFW317AY8D3s1g3Al4A9in6eV6XHQ8ClgC9Kv3vyq98X24hWF52BvpExCUR\n8XFEjAceKfr8eOCKiHgkkl8DH2bfg/QX/2UR8WpEvAP8J3BE9llr3RmTI+LOiAjgN8C2rZR7CAhJ\ne2TvDwEejog3gI+B5YEvSOobES9FxOw26lkcy85Av4j4r4hYHBEPAH8siftTsUfEzdl9iYibgOeA\nndq4X7OPgM8Am2U/v2kRMT8i/kH6OQ8FdgCmA38Cds/iey77ee4IrBUR52WxzgGuBA4v495Wp5wQ\nLC/rAa+WnPtb0fGGwKlZd8c7kt4BBmTfa1Y8cPxSyWctmVt0vBBYoaUnY7KEcSNLf1EfCYzLPnse\n+BbpL+S5km7IuqTKsV5JzJDq3Bz3MgO1ko6WNK3oZ7AV6Rd9e64D7gJulPSqpAsl9ck+mwQUSC2h\nSdlrKLAn0JSV2ZDU7Vb88z8LWLusmlpdckKwvLxO6u4ptmHR8UvAf0bEGkWvlSPit0VlNig5fi07\nbukJmI4+FXMDcIikDYEhwPhPLhRxQ0TskcUbwIWtXKP0nq8BAyUVtwI2ZGli/FT57N7/C5wErBkR\nawBPUcaAbvZX/bkR8QVgV2AUqdsNUgIYxtIE0JwghmbHkBLXnJKf/6oRMaqVulkDcEKwvDwMLJZ0\nsqS+kr5M6qZo9kvga5KGKOknaX9JK2efCzhR0vqS1gS+R/qrHlJL4DOSVi26XoeeiomI6cBbpG6S\nOyPifQBJm0vaS9LypC6sf5K6kVoyF9i46P1fSC2T07M6F0i/qG9spXw/0i/et4Beko4jtRDalT16\nu7Wk3sB8YFFRnH8mjYXsCEyNiJmkxLQT8GBWZgowX9LpklaU1FvSVpK+2HyLcuKw+uKEYLmIiEXA\nl0kDo38nDZgW/xX+GPBV4DLgbVLf+dEs/cs0gOuBu0mDnc8B52XfnUX6C3929gRS81NGpX/VtvdX\n7vXAXtn/NlseuAB4k9TKWYvUldKSq4Atsy6X32d1PgAYkX3/MuCoiPhrK+VnAj8h/QJ/g5QMHiqJ\nv7U6rAP8DngPmElqCVwHEBEfkAaMn46IxVn5h4EXI+KtrMwSUrLaDpidxfu/QHOSLb23WwwNQKk7\nNccbSC+SnrT4GFgUEUNKPi8At5D+UQKMj4jzcg3Kqp6kOcD/j4j7Kx2LWaPo036RLgugEBFvt1Fm\nUkSM7oFYzMysFT3VZdRef6T7K83MKqwnEkIA90p6VNJXW/l8V0lPSJooacseiMmqXERs5O4is57V\nE11Gu0XE65I+C9wjaVZEFK/g+DgwMCIWShoBTAA274G4zMysSO6Dyp+6mXQ2sCAiftJGmTnADsVj\nDpL8hIOZWSdERNld8rl2GUlaSdIq2XE/YB9gRkmZ/s0TeSQNISWpZQagK73GR56vs88+u+IxuH6u\nm+tXf6+OyrvLqD/wh+z3fR9gXETcLekEgIi4grSOzNclLSZN6vFaKmZmFZBrQoi0YNZ2LZy/ouj4\nZ8DP8ozDzMza55nKVaBQKFQ6hFzVc/3quW7g+jWaHh1U7ixJUQtxmplVE0lEtQwqm5lZ7XBCMDMz\nwAnBzMwyTghmZgY4IZiZWcYJwczMACcEMzPLOCGYmRnghGBmZpmaSQieqGxmlq+aSQizZlU6AjOz\n+lYzCWHChEpHYGZW32omIdxyS6UjMDOrbzWTEJ59Fl5/vdJRmJnVr9wTgqQXJT0paZqkqa2UuVTS\nc5KekDS4pTL77Qe33ZZvrGZmjawnWggBFCJicEQMKf1Q0khg04jYDDge+EVLFznwQHcbmZnlqae6\njNraoGE0cC1AREwBVpfUv7TQiBHw4IMwf35OEZqZNbieaiHcK+lRSV9t4fP1gZeL3r8CDCgttNpq\nsOuucNddOUVpZtbg+vTAPXaLiNclfRa4R9KsiJhcUqa0BbHMNLSxY8fSpw+cey6stVbBe6GamZVo\namqiqamp09/v0T2VJZ0NLIiInxSduxxoiogbs/ezgKERMbeoTEQEr7wC224Lb7wBffv2WNhmZjWp\nqvZUlrSSpFWy437APsCMkmK3AkdnZXYG3i1OBsUGDICNNoKHHsoxaDOzBpX3GEJ/YLKk6cAU4I8R\ncbekEySdABARE4HZkp4HrgBObOuCBx7oWctmZnno0S6jzmruMgKYMQMOOADmzAGV3RAyM2s8VdVl\nlIettoJeveDJJysdiZlZfam5hCB5kpqZWR5qLiGAE4KZWR5qbgwBYPFi6N8fpk2DDTaoYGBmZlWs\n7scQAPr0gVGj4NZbKx2JmVn9qMmEAO42MjPrbjXZZQSwYAGstx689BKsvnqFAjMzq2IN0WUEsPLK\nsOeecMcdlY7EzKw+1GxCAM9aNjPrTjXbZQRpkbsttoC5c2H55SsQmJlZFWuYLiOAddaBLbeELqz2\namZmmZpOCOCnjczMuktNdxkBzJoFw4enp4161Xx6MzPrPg3VZQRpDKFfP3jssUpHYmZW22o+IQAc\ndJC7jczMuqouEoLHEczMui73hCCpt6Rpkm5r4bOCpPeyz6dJ+n5n7rHTTjBvHsye3fV4zcwaVU+0\nEE4BZgKtjV5PiojB2eu8ztygd++0i5pbCWZmnZdrQpA0ABgJXAm0NtLdLRthetaymVnX5N1CuAg4\nDVjSyucB7CrpCUkTJW3Z2RsNHw7Tp8Nbb3X2CmZmja1PXheWNAqYFxHTJBVaKfY4MDAiFkoaAUwA\nNm+p4NixYz85LhQKFAqfvuSKK8Lee8Ptt8Mxx3Q9fjOzWtPU1ERTF5ZuyG1imqTzgaOAxcAKwKrA\n+Ig4uo3vzAF2iIi3S863OjGt2LXXpnGE3/++S6GbmdWFjk5M65GZypKGAt+JiANKzvcntSJC0hDg\npogY1ML3y0oIb70Fm2ySFr1bccVuCt7MrEZV80zlAJB0gqQTsnOHADMkTQcuBg7vyg3WWgu22w7u\nvbdrgZqZNaKaX8uo1EUXwdNPw5VX5hyUmVmVq8ouo67qSEKYPRt22QVeey3NTzAza1TV3GXUIzbe\nGNZeG6ZMqXQkZma1pe4SAnhtIzOzzqjbhOBZy2ZmHVOXCWGHHeCDD9LmOWZmVp66TAi9esHo0e42\nMjPriLpMCOBxBDOzjqq7x06bffgh9O+fuo3WWSenwMzMqljDP3babPnlYd994bZltuUxM7OW1G1C\ngLTXshe6MzMrT10nhFGjYM4cOP/8SkdiZlb9ctsPoRqssgrcfz8UCtCnD5x+eqUjMjOrXnWdEADW\nWw8eeACGDk1J4d//vdIRmZlVp7pPCADrr//ppHDyyZWOyMys+jREQgAYODAlhUIhrYJ60kmVjsjM\nrLo0TEIA2HBDuO8+GDYstRROOKH975iZNYrcnzKS1FvSNEktzgiQdKmk5yQ9IWlw3vFsvHFKCued\nB1ddlffdzMxqR0+0EE4BZgKrlH4gaSSwaURsJmkn4BfAznkHtOmmKSnstVfqPjr22LzvaGZW/XJt\nIUgaAIwErgRamj49GrgWICKmAKtL6p9nTM023zztvfy978FvftMTdzQzq255txAuAk4DVm3l8/WB\nl4vevwIMAObmHBcAW2wB99wDw4enlsIRR/TEXc3MqlNuCUHSKGBeREyTVGiraMn7FlexGzt27CfH\nhUKBQqGtS5Zvyy3h7rvhS19KSeHQQ7vlsmZmPa6pqYmmpqZOfz+31U4lnQ8cBSwGViC1EsZHxNFF\nZS4HmiLixuz9LGBoRMwtuVaHVzvtqCeeSIvh/exn8JWv5HorM7MeUTWrnUbEdyNiYERsBBwO3F+c\nDDK3AkcDSNoZeLc0GfSUbbeFO+6AE0/0Pgpm1ph6ch5CAEg6ASAiroiIiZJGSnoe+AA4rgfjWcbg\nwXD77TByZOo+GjWqktGYmfWsut0gpyumTk3J4NprYcSIHrutmVm3qpouo1o2ZEjqNjrmmDTgbGbW\nCJwQWrHLLmlznTFj0iQ2M7N654TQht13h/Hj4fDDoQtPcpmZ1QQnhHbsuSfcdBP8y7/A5MmVjsbM\nLD9OCGUYNgxuuCHNT/jTnyodjZlZPpwQyjR8OFx3HRx8MPzlL5WOxsys+zkhdMC++8I118Do0fDI\nI5WOxsysezkhdNDIkWkfhVGj4LHHKh2NmVn3cULohAMOgMsvT8lh+vRKR2Nm1j3aXLpCUl9gH2BP\nYBBp+Ym/AQ8Cd0XE4rwDrFYHHwwffwz77Zcmr22zTaUjMjPrmlaXrpD0H8BXgD8DU4HXSC2KdYEh\npJ3Nbo6I83IPsoeXruiI3/4WvvWttK/CVltVOhozs6U6unRFWy2EJ4DzWvlNfLWkXkDDL/922GGp\npbDPPmlG8+c/X+mIzMw6x4vbdZNf/xrOOgvuvx8+97lKR2Nm1r0thOYL7gh8lzSG0Fw+IsK95kWO\nPjq1FPbeGx54ADbbrNIRmZl1TDn7IYwDvgM8BSzJN5zadtxxsHjx0qSwySaVjsjMrHzlJIQ3I+LW\nzlxc0grAJGB5YDnglog4q6RMAbgFmJ2dGt8TA9V5+epXU0thr73SgngbbVTpiMzMylNOQjhH0lXA\nvcBH2bmIiN+398WI+KekYRGxUFIf4CFJu0fEQyVFJ0XE6I6FXr2+9rXUUmhOChtuWOmIzMzaV05C\nOAb4XFa2uMuo3YQAEBELs8PlgN7A2y0UK3vQo1Z84xufTgoDB1Y6IjOztpWTEL4IbNHZx3yyx1Mf\nBzYBfhERM0uKBLCrpCeAV4HvtFCmJn3rW5/uPlp//UpHZGbWunKWrngY2LKzN4iIJRGxHTAA2DMb\nMyj2ODAwIrYFfgpM6Oy9qtGpp8K//VtKCq+/XulozMxaV04LYRdguqQ5wIfZuQ4/dhoR70m6ndTi\naCo6P7/o+A5JP5e0ZkR8qmtp7NixnxwXCgUKhUJHbl9RZ5zx6ZZC//6VjsjM6lFTUxNNXdjesd2J\naZIGtXQ+Il5s9+LSWsDiiHhX0orAXcA5EXFfUZn+wLyICElDgJsiYlDJdap+Ylo5zj03LXXxwAOw\n9tqVjsbM6l23TUyTtEpEzG/rF39zmTauvy5wbTaO0Au4LiLuk3QCQERcARwCfF3SYmAhcHi5wdea\nH/wgDTQPH55mNK+1VqUjMjNbqq3F7e4FniXNEXi0uQtH0mdI3T4HAZtFxPDcg6yTFgJABHzvezBx\nYkoKa65Z6YjMrF51tIXQZpeRpL2AI4HdgPWy068BDwHjIqKp86GWr54SAqSkcMYZaTG8e++FNdao\ndERmVo+6NSFUi3pLCJCSwqmnwuTJaens1VevdERmVm+cEGpIBJxyCkydmjbZWXXVSkdkZvWkownB\nW2hWkASXXALbbw8jRsD8tobnzcxy5oRQYRJcdlnabW3kSFiwoNIRmVmjKqvLSFJvoD9Fj6lGxEs5\nxlV6/7rsMiq2ZElaKfWFF+D226Ffv0pHZGa1rtvHECR9EzgbmAd83Hw+IrbubJAd1QgJAVJS+Nd/\nhZdfhttug5VWqnREZlbL8kgILwBDIuLvXQ2usxolIUBa4uKYY2DePLj1VlhhhUpHZGa1Ko9B5ZeA\n9zsfknVE795wzTXwmc/AwQfDhx+2+xUzs27R1kzlU7PDLYEtgD/y6Q1y/if/8D6JpWFaCM0WL4Yj\nj4SFC2H8eFh++UpHZGa1pjtbCKsAK5NaCPeQNrhZOXut0pUgrX19+sC4cbDccrDvvjBjRqUjMrN6\nV84YwqERcVN75/LUiC2EZosWweWXw3nnwejRacXUddetdFRmVgvyGEM4q8xzloO+feGb34Rnn01r\nHm21FZxzDnzwQaUjM7N609YYwghgJHAYcCNL9z1eBdgyIob0SIQ0dguh1Isvwne/C5MmwQ9/mJ5I\n6t270lGZWTXqtsdOJW0LDAbOBf6j6KP5wAMR8U5XAu0IJ4RlTZ2aFsd77z347/+GffapdERmVm3y\nmIfQl9S1tAUQwKyI+KjNL3UzJ4SWRcCECXD66bDJJikxbLVVpaMys2qRxxjCPsDzwKXAT4EXJI0s\nI5AVJE2RNF3STEkXtFLuUknPSXpC0uByA7e0DtLBB8PTT6d1kPbaKy1/8frrlY7MzGpROQnhf4Bh\nETE0IoYCBeCi9r4UEf/MvrcdsA0wTNLuxWWyxLJpRGwGHA/8ooPxG+nR1JNPhr/+1QPPZtZ55SSE\n9yPi+aL3sylz5nJELMwOlwN6A2+XFBkNXJuVnQKsLql/Ode2Za2+OvzoR/DYY+mppM03h6uvTsth\nmJm1p5yE8JikiZKOlXQsacbyo5K+LOnLbX1RUi9J04G5pIHomSVF1gdeLnr/CjCg/PCtJYMGwfXX\nw+9/D7/6FQwenDbgMTNrSzkJYQXSSqdDs9eb2bkDslerImJJ1mU0ANhTUqGFYqUDHh497iY77QQP\nPpi6j046KW3C89RTlY7KzKpVn/YKRMSxXb1JRLwn6Xbgi0BT0UevAgOL3g/Izi1j7NixnxwXCgUK\nhUJXw2oIzQPP+++fZjzvtRcceKBnPJvVo6amJpqamjr9/XIeO/0c8HNgnYj4gqRtgNERcV4731sL\nWBwR70paEbgLOCci7isqMxL4RkSMlLQzcHFE7NzCtfzYaTd59104/3y46qo0EP2d73gzHrN6lcdj\np78EvsvSlU5nAEeU8b11gfuzMYQpwG0RcZ+kEySdABARE4HZkp4HrgBOLDdw6xwPPJtZa8ppITwa\nEV+UNC0iBmfnpmdjAz3CLYT8TJmSWgme8WxWf/JoIbwpadOiGxwCeOpTnfDAs5k1KychfIPUnbOF\npNeAbwNfzzUq61HFM55HjPCMZ7NG1W5CiIgXImJvYC3gcxGxW0S8mHtk1uM849mssZWzhSa0MDfA\nW2jWvxdfhLPOSl1KXmrbrPbksYXmDqQuovVJ8wS+BmzflSCtNgwaBDfcsHTG8/bbwz33VDoqM8tL\nOU8ZTQZGRsT87P0qwMSI2KMH4muOwS2ECiteanvTTeHHP/ZS22bVLo+njNYGFhW9X5SdswbigWez\n+ldOQvg1MFXSWEnnkCaZXZtvWFatPPBsVr/a7TICkLQDsAdpcPnBiJiWd2Al93eXUZWaMyft8eyB\nZ7Pq0+1baFYDJ4Tq1zzj+f3304znL32p0hGZmROCVYwHns2qSx6DymZl8cCzWW1zQrBu54Fns9rk\nhGC5aV5q+9FHYdYsL7VtVu08hmA9xgPPZj3Lg8pW1TzwbNZzqmpQWdJASQ9IelrSU5JObqFMQdJ7\nkqZlr+/nGZNVlgeezapX3mMIi4BvR8QXgJ2BkyR9voVykyJicPZqc69mqw8eeDarPrkmhIh4IyKm\nZ8cLgGeA9VooWnaTxuqLB57NqkePPWUkaRAwmLQWUrEAdpX0hKSJkrbsqZisemy0kZfaNqu0Pj1x\nE0krAzcDp2QthWKPAwMjYqGkEcAEYPPSa4wdO/aT40KhQKFQyC1eq5zmPZ4nTIATT/TAs1lHNDU1\n0dTU1Onv5/6UkaS+wB+BOyLi4jLKzwF2iIi3i875KaMG9NFHcPnlcN55cOCBcO65sO66lY7KrHZU\n21NGAq4CZraWDCT1z8ohaQgpSb3dUllrLC0NPJ97rgeezfKS9xjCbsD/A4YVPVY6QtIJkk7IyhwC\nzJA0HbgYODznmKzGFA88P/OMB57N8uKJaVZzPOPZrDyeqWwNIQL+8Ac44wwPPJu1pqrGEMzyIsGX\nv+wZz2bdyQnBapoHns26jxOC1QUPPJt1nccQrC5NmQKnngrz53vg2RqXB5XNMh54tkbnQWWzTOnA\n8957w/HHe+DZrDVOCFb3mgeen302jTV44NmsZU4I1jA88GzWNo8hWMMqHni+8ELYZx/o5T+RrI54\nUNmsA5oHnseOhffegyOPhDFjPPhs9cEJwayTnnwSxo2D66+HNddMieGII2DgwEpHZtY5TghmXbRk\nCUyenJLD+PGw9dYpORxySJoNbVYrnBDMutGHH8Idd6TkcPfdac2kMWNg1ChYYYVKR2fWNicEs5y8\n917a83ncOHj8cTjooJQcCgXo3bvS0ZktywnBrAe89hrceGNKDm+8AYcfnpLD4MFpQpxZNaiqhCBp\nIPBrYG0ggP+NiEtbKHcpMAJYCBwbEdNKPndCsKr1zDNpIHrcOFh++ZQYjjwSNt640pFZo6u2hLAO\nsE5ETJe0MvAYcFBEPFNUZiTwjYgYKWkn4JKI2LnkOk4IVvUi4C9/SYnhppvS+kljxsChh8JnP1vp\n6KwRVdVaRhHxRkRMz44XAM8A65UUGw1cm5WZAqwuqX+ecZnlQYJddoHLLoNXX4Xvfx8efhg22wz2\n3z+1IrxchlWzHpuXKWkQMBiYUvLR+sDLRe9fAQb0TFRm+ejbF0aOTK2FV15JXUi/+Q0MGABHHQV3\n3gmLF1c6SrNP69MTN8m6i24GTslaCssUKXm/TP/Q2LFjPzkuFAoUCoVujNAsPyuvnLqOxoyBefNS\nd9I558Axx8Bhh6XzQ4Z4MNq6rqmpiaampk5/P/enjCT1Bf4I3BERF7fw+eVAU0TcmL2fBQyNiLlF\nZTyGYHXn+eeXDkZ//PHSpLH55pWOzOpFVY0hSBJwFTCzpWSQuRU4Oiu/M/BucTIwq1ebbgo/+AHM\nmpUeYX3/fRg6FHbcES6+OD3OataT8n7KaHfgQeBJlnYDfRfYACAirsjKXQbsB3wAHBcRj5dcxy0E\nawgffwz3359aDbfckpLDmDFw8MGw6qqVjs5qTVU9dtpdnBCsEf3jH3DbbSk5TJoE++6bksN++6VN\nf8za44RgVofefht+97uUHGbOTAvtjRkDu+3mPRysdU4IZnXub3+DG25IyeH9972Hg7XOCcGsgXgP\nB2uLE4JZA/IeDtYSJwSzBuc9HKyZE4KZfcJ7ODQ2JwQza5H3cGg8Tghm1i7v4dAYnBDMrGzew6G+\nOSGYWacsWgT33JOSw+23p0lvY8bAgQdCv36Vjs46wwnBzLpswQKYMCElhz//GQ44ICWH4cOhT48s\nmm/dwQnBzLrVvHnw29+m5DBnjvdwqCVOCGaWG+/hUFucEMwsdxHw2GMpMdx4Y9oadMyY9CjrOutU\nOjpr5oRgZj3KezhULycEM6sY7+FQXaoqIUi6GtgfmBcRW7fweQG4BZidnRofEee1UM4JwazG/P3v\ncPPN3sOhkqotIewBLAB+3UZC+PeIGN3OdZwQzGqY93CojI4mhFzzdERMBt5pp5gfXDOrcxtuCGee\nCTNmpC6lJUtgxAjYdlv40Y/g5ZcrHaFBzgmhDAHsKukJSRMlbVnheMwsZ9tsAxdemFoNl16aHmXd\nbru0AusvfwnvtPcnpOUm90FlSYOA21rpMloF+DgiFkoaAVwSEcs80Swpzj777E/eFwoFCoVCbjGb\nWc/yHg7do6mpiaampk/en3POOdUzhgBtJ4QWys4BdoiIt0vOewzBrEF4D4fuU1VjCO2R1F9Kk98l\nDSElqLfb+ZqZ1bHVVoPjjoN774WnnkoDz6edBhtsAKeempKE/z7MR95PGd0ADAXWAuYCZwN9ASLi\nCkknAV8HFgMLSU8c/aWF67iFYNbgnnkmtRquv957OJSrqh477S5OCGbWLCKtwDpuHPzud97DoS1O\nCGbWMBYtSoPQ48bBxInew6GUE4KZNSTv4bAsJwQza3jewyFxQjAzK9LIezg4IZiZtaAR93BwQjAz\na0ej7OHghGBm1gH1vIeDE4KZWSfV2x4OTghmZt2gHvZwcEIwM+tmTz65dNmMNdeECy6AkSMrHVX7\nnBDMzHKyZAlMnpySwtbtrt9ceU4IZmYG1Njy12ZmVj2cEMzMDHBCMDOzTK4JQdLVkuZKmtFGmUsl\nPSfpCUmD84zHzMxal3cL4VfAfq19KGkksGlEbAYcD/wi53iqUvGm2PWonutXz3UD16/R5JoQImIy\n8E4bRUYD12ZlpwCrS+qfZ0zVqN7/UdZz/eq5buD6NZpKjyGsD7xc9P4VYECFYjEza2iVTggApc/I\nesKBmVkF5D4xTdIg4LaIWGZen6TLgaaIuDF7PwsYGhFzS8o5SZiZdUJHJqZVeqfRW4FvADdK2hl4\ntzQZQMcqZGZmnZNrQpB0AzAUWEvSy8DZQF+AiLgiIiZKGinpeeAD4Lg84zEzs9bVxFpGZmaWv2oY\nVG6TpP0kzcomr51R6Xi6oqWJepLWlHSPpL9KulvS6pWMsSskDZT0gKSnJT0l6eTsfF3UUdIKkqZI\nmi5ppqTbjaFfAAAGKElEQVQLsvN1UT8ASb0lTZN0W/a+nur2oqQns/pNzc7VU/1Wl3SzpGeyf587\ndbR+VZ0QJPUGLiNNbtsSOELS5ysbVZe0NFHvTOCeiNgcuC97X6sWAd+OiC8AOwMnZf+96qKOEfFP\nYFhEbAdsAwyTtDt1Ur/MKcBMlj7tV091C6AQEYMjYkh2rp7qdwkwMSI+T/r3OYuO1i8iqvYF7ALc\nWfT+TODMSsfVxToNAmYUvZ8F9M+O1wFmVTrGbqzrBGB4PdYRWAl4BPhCvdSPNAfoXmAY6cnAuvr3\nCcwBPlNyri7qB6wGzG7hfIfqV9UtBFqeuLZ+hWLJS/9Y+mTVXKAuZmpnjxsPBqZQR3WU1EvSdFI9\nHoiIp6mf+l0EnAYsKTpXL3WD1EK4V9Kjkr6anauX+m0EvCnpV5Iel/RLSf3oYP2qPSE01Ih3pDRe\n83WWtDIwHjglIuYXf1brdYyIJZG6jAYAe0oaVvJ5TdZP0ihgXkRMY9nJokDt1q3IbhExGBhB6s7c\no/jDGq9fH2B74OcRsT3pqc1PdQ+VU79qTwivAgOL3g8ktRLqyVxJ6wBIWheYV+F4ukRSX1IyuC4i\nJmSn66qOABHxHnA7sAP1Ub9dgdGS5gA3AHtJuo76qBsAEfF69r9vAn8AhlA/9XsFeCUiHsne30xK\nEG90pH7VnhAeBTaTNEjScsBhpMls9eRW4Jjs+BhSv3tNkiTgKmBmRFxc9FFd1FHSWs1PaUhaEfgS\nMI06qF9EfDciBkbERsDhwP0RcRR1UDcASStJWiU77gfsA8ygTuoXEW8AL0vaPDs1HHgauI0O1K/q\n5yFIGgFcDPQGroqICyocUqcVT9Qj9ef9ALgFuAnYAHgRODQi3q1UjF2RPXHzIPAkS5umZwFTqYM6\nStqatDpvr+x1XUT8WNKa1EH9mkkaCpwaEaPrpW6SNiK1CiB1r4yLiAvqpX4AkrYFrgSWA14gTfTt\nTQfqV/UJwczMeka1dxmZmVkPcUIwMzPACcHMzDJOCGZmBjghmJlZxgnBzMwAJwSrQZJWk/T1Mspt\nKOmIMsoNKl6SPC+SrpH0ley4SdIOrZT7raRNOnDdbSRd1V1xWuNyQrBatAZwYhnlNgKOzDmWjihe\nS6bFdWUkbQr0i4gXyr5oxJPAJpLW7pYorWE5IVgt+i/SL8Bpki4EkPRjSTOyDVAOLSq3R1bulKzF\n8KCkx7LXLm3dRNK6Wflp2bV3l3SIpJ9kn58i6YXseGNJD2XHO2QtgEcl3dm8lkyZDqdoeRZJCyT9\nSGnDoXsk7SxpkqQXJB1Q9L07gH/pwH3MluGEYLXoDOCFSBudnJF1w2xL2hRkOPDj7JfwGcDkrNwl\npIW9vhQRO5B+8V7azn2OIO3HMTi79nRgMtC8SuYewFuS1suOJ0nqA/wU+EpEfJG0KdJ/dqBuu5HW\n8Gq2EnBfRGwFzAfOBfYCDs6Om00F9uzAfcyW0afSAZh1QunyzLsB12fL+86TNAnYEXi/pNxywGXZ\nmi8fA5vTtkeAq7MVXCdExBPAAkkrZ0t8DwCuJ/0i3p20yusWpE1z7k1r/dEbeK0DddsQeL3o/UcR\ncVd2PAP4Z0R8LOkp0mZLzV4veW/WYW4hWL0oTRItLdL1beD1iNgG+CIpQbQqIppbA68C10g6Kvvo\nYdLCYc8CD5ESwi7An7I4ns5aJYMjYpuIKN02tSN1WVR0vAT4KIttCZ/+g07U7lr+ViWcEKwWzQdW\nKXo/GTgs283ss6Rf0FOBBSXlVgXeyI6PJv313ipJGwBvRsSVpFUkBxfd7zRgEmn562Gkv9znk5LE\nZyXtnF2jr6QtO1C3vwHrdqB8s3Wz75p1mruMrOZExN8l/Sl7VHRiNo6wC/AE6a/k0yJinqS3gY+z\nLS9/BfwcGC/paOBOUsL45LIt3KoAnCZpESkJHZ2df4i0leuDEbFE0kvAM1lsH0k6BLhU0mqk/49d\nRNq4vhwPkVovj7USV7RyPIS09LhZp3n5a7MqImlj4KcRsX8Hv9dEWuu+Vnf8sirgLiOzKhIRs4H5\nHZ2YBjzvZGBd5RaCmZkBbiGYmVnGCcHMzAAnBDMzyzghmJkZ4IRgZmYZJwQzMwPg/wDP0conunvE\nNwAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0x1d192b0>"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex13.3:Pg-664"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 13.3\n",
+ "\n",
+ "import math\n",
+ "from scipy.optimize import fsolve\n",
+ "phi=12*math.pi/180;\n",
+ "Ds=0.8; # in m\n",
+ "Z=5; # in m \n",
+ "sigmaT=450;\n",
+ "U=math.pi*Ds*Z*sigmaT*math.tan(phi); # in kN\n",
+ "def f(D):\n",
+ " return 1202-450*6.14/1.25*3.14/4*(D**2-0.8**2)\n",
+ "[x]=fsolve(f,1);\n",
+ "Db=x; # in m\n",
+ "print round(Db,2),\"diameter of bell in m\"\n",
+ "#partb\n",
+ "D=600; # in kN\n",
+ "cu=450; # in kN/m^2\n",
+ "Nc=6.14;\n",
+ "FS=cu*Nc*math.pi/4*(Db**2-Ds**2)/(U-D);\n",
+ "if FS>2 :\n",
+ " print \"the structure is compatible with safety measures\"\n",
+ "\n",
+ "#check bearing capacity\n",
+ "L=D+300;#dead+live load in kN\n",
+ "Dp=L/math.pi*4/Db**2;#downward pressure\n",
+ "FS=2763/Dp; # factor of safety\n",
+ "if FS>3:\n",
+ " print \"the structure is safe in bearing \"\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1.15 diameter of bell in m\n",
+ "the structure is compatible with safety measures\n",
+ "the structure is safe in bearing \n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter14_2.ipynb b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter14_2.ipynb new file mode 100755 index 00000000..c829bef5 --- /dev/null +++ b/Principles_Of_Foundation_Engineering_by_B._M._Das/Chapter14_2.ipynb @@ -0,0 +1,152 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:23456872c8877381c549ede3a12ff29dc232ffad3142abc24c5d2ad8d9888f99"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter14:Soil Improvement and Ground Modification"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex14.1:Pg-695"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 14.1\n",
+ "\n",
+ "import math\n",
+ "Cc=0.28;\n",
+ "Hc=6.0;\n",
+ "eo=0.9;\n",
+ "Cv=0.36; # in m^2/mo.\n",
+ "H=3.0; # in m\n",
+ "t=9.0; # in mo.\n",
+ "sigmao=210.0;# in kN/m^2\n",
+ "sigmap=115; #deltasigmap in kN/m^2\n",
+ "Sc=Cc*Hc/(1+eo)*math.log10((sigmao+sigmap)/sigmao); # in m\n",
+ "print round(Sc*1000,1),\"primary consolidation in mm\"\n",
+ "Tv=Cv*t/H**2;\n",
+ "#from table\n",
+ "k=1.8; #constant\n",
+ "sf=k*sigmap; # in kN/m**2\n",
+ "print round(sf,2),\"deltasigmaf in kN/m**2\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "167.7 primary consolidation in mm\n",
+ "207.0 deltasigmaf in kN/m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex14.2:Pg-703"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 14.2\n",
+ "\n",
+ "import math\n",
+ "Tv=0.36;\n",
+ "sigmap=115; # in kN/m^2\n",
+ "Uv=math.sqrt(4*Tv/math.pi)*100;\n",
+ "print round(Uv,2),\"Uv in %\"\n",
+ "#from table \n",
+ "k=0.12; #constant\n",
+ "sf=k*sigmap;\n",
+ "print sf,\"deltasigmaf in kN/m**2\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "67.7 Uv in %\n",
+ "13.8 deltasigmaf in kN/m**2\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Ex14.3:Pg-704"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#example 14.3\n",
+ "\n",
+ "Cc=0.31;\n",
+ "Hc=15.0;#ft\n",
+ "eo=1.1;\n",
+ "n=10.0;\n",
+ "Uv=0.09;\n",
+ "sigmao=1000.0; # in lb/ft^2\n",
+ "deltasigma=2000.0; # deltasigmap+deltasigmaf\n",
+ "Sc=Cc*Hc/(1+eo)*math.log10((sigmao+deltasigma)/sigmao);\n",
+ "print round(Sc,3),\"primary consolidation in ft\"\n",
+ "m=n**2/(n**2-1)*math.log(n)-(3*n**2-1)/4/n**2;\n",
+ "A=2/m;\n",
+ "Ur=(0.096-1/A*(1-math.exp(-A*0.096)))/0.192;\n",
+ "Uvf=1-(1-Ur)*(1-Uv);\n",
+ "Sc30=Sc*Uvf*12; #settlement after 30 days\n",
+ "print round(Sc30,2),\"settlement after 30 days in inch\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "1.056 primary consolidation in ft\n",
+ "1.48 settlement after 30 days in inch\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file diff --git a/Principles_Of_Foundation_Engineering_by_B._M._Das/screenshots/ex1.2.png b/Principles_Of_Foundation_Engineering_by_B._M._Das/screenshots/ex1.2.png Binary files differnew file mode 100755 index 00000000..8346a9de --- /dev/null +++ b/Principles_Of_Foundation_Engineering_by_B._M._Das/screenshots/ex1.2.png diff --git a/Principles_Of_Foundation_Engineering_by_B._M._Das/screenshots/ex13.2.png b/Principles_Of_Foundation_Engineering_by_B._M._Das/screenshots/ex13.2.png Binary files differnew file mode 100755 index 00000000..bc9f319c --- /dev/null +++ b/Principles_Of_Foundation_Engineering_by_B._M._Das/screenshots/ex13.2.png diff --git a/Principles_Of_Foundation_Engineering_by_B._M._Das/screenshots/ex14.2.png b/Principles_Of_Foundation_Engineering_by_B._M._Das/screenshots/ex14.2.png Binary files differnew file mode 100755 index 00000000..1a58b738 --- /dev/null +++ b/Principles_Of_Foundation_Engineering_by_B._M._Das/screenshots/ex14.2.png |