diff options
Diffstat (limited to 'Principles_Of_Electronic_Instrumentation/Pinciples_of_electronic_Instrumentation_Ch14.ipynb')
-rwxr-xr-x | Principles_Of_Electronic_Instrumentation/Pinciples_of_electronic_Instrumentation_Ch14.ipynb | 526 |
1 files changed, 0 insertions, 526 deletions
diff --git a/Principles_Of_Electronic_Instrumentation/Pinciples_of_electronic_Instrumentation_Ch14.ipynb b/Principles_Of_Electronic_Instrumentation/Pinciples_of_electronic_Instrumentation_Ch14.ipynb deleted file mode 100755 index da8a1301..00000000 --- a/Principles_Of_Electronic_Instrumentation/Pinciples_of_electronic_Instrumentation_Ch14.ipynb +++ /dev/null @@ -1,526 +0,0 @@ -{
- "metadata": {
- "name": ""
- },
- "nbformat": 3,
- "nbformat_minor": 0,
- "worksheets": [
- {
- "cells": [
- {
- "cell_type": "heading",
- "level": 1,
- "metadata": {},
- "source": [
- "Chapter 14 : Transducers And The Measurement System"
- ]
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example14_1,pg 421"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# find percentage change in resistance\n",
- "\n",
- "import math\n",
- "#Variable declaration\n",
- "delVo=120*10**-3 #output voltage\n",
- "Vs=12.0 #supply voltage\n",
- "R=120.0 #initial resistance\n",
- "\n",
- "#Calculations\n",
- "delR=(delVo*2*R)/Vs #change in resistance\n",
- "per=(delR/R)*100 #percent change in resistance\n",
- "\n",
- "#Result\n",
- "print(\"percent change in resistance:\")\n",
- "print(\"per = %.f\"%per)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "percent change in resistance:\n",
- "per = 2\n"
- ]
- }
- ],
- "prompt_number": 28
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example14_2,pg 423"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# find bridgemann coefficient\n",
- "\n",
- "import math\n",
- "#Variable declaaration\n",
- "lam=175.0 #gauge factor\n",
- "mu=0.18 #poisson's ratio\n",
- "E=18.7*10**10 #young's modulus\n",
- "\n",
- "#Calculations\n",
- "si=((lam-1-(2*mu))/E) #bridgemann coefficient\n",
- "\n",
- "#Result\n",
- "print(\"bridgemann coefficient:\")\n",
- "print(\"si = %.2f * 10^-10 m^2/N\"%(math.floor(si*10**12)/100))"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "bridgemann coefficient:\n",
- "si = 9.28 * 10^-10 m^2/N\n"
- ]
- }
- ],
- "prompt_number": 32
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example14_3,pg 428"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# pt100 RTD\n",
- "\n",
- "import math\n",
- "#Variable declaration\n",
- "R4=10*10**3\n",
- "Ro=-2.2*10**3 #output resistance\n",
- "R2=R4-0.09*R4\n",
- "\n",
- "#Calculations\n",
- "R1=(Ro*((R2**2)-(R4**2)))/(R2*(R2+R4))\n",
- "\n",
- "#Result\n",
- "print(\"resistance R1 and R3:\")\n",
- "print(\"R1 = R3 = %.1f ohm\"%(math.floor(R1*10)/10))"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "resistance R1 and R3:\n",
- "R1 = R3 = 217.5 ohm\n"
- ]
- }
- ],
- "prompt_number": 35
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example14_4,pg 435"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# senstivity in measurement of capacitance\n",
- "\n",
- "import math\n",
- "#Variable declaration\n",
- "#assuming eps1=9.85*10^12\n",
- "x=4.0 #separation between plates\n",
- "x3=1.0 #thickness of dielectric\n",
- "eps1=9.85*10**12 #dielectric const. of free space\n",
- "eps2=120.0*10**12 #dielectric const. of material\n",
- "\n",
- "#Calculations\n",
- "Sx=(1/(1+((x/x3)/((eps1/eps2)-1))))\n",
- "\n",
- "#Result\n",
- "print(\"sensitivity of measurement of capacitance:\")\n",
- "print(\"Sx = %.4f\"%Sx)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "sensitivity of measurement of capacitance:\n",
- "Sx = -0.2978\n"
- ]
- }
- ],
- "prompt_number": 37
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example14_5,pg 510"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# find max gauge factor\n",
- "\n",
- "import math\n",
- "#Variable declaration\n",
- "#if (delp/p)=0, the gauge factor is lam=1+2u\n",
- "u=0.5 #max. value of poisson's ratio\n",
- "\n",
- "#Calculations\n",
- "lam=1+(2*u)\n",
- "\n",
- "#Result\n",
- "print(\"max. gauge factor:\")\n",
- "print(\"lam = %.f\"%lam)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "max. gauge factor:\n",
- "lam = 2\n"
- ]
- }
- ],
- "prompt_number": 1
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example14_6,pg 510"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# find Young modulus\n",
- "\n",
- "import math\n",
- "#Variable declaration\n",
- "lam=-150.0 #max. gauge factor\n",
- "si=-9.25*10**-10 #resistivity change\n",
- "mu=0.5 #max poisson's ratio\n",
- "\n",
- "#Calculations\n",
- "E=((lam-1-(2*mu))/si)\n",
- "\n",
- "#Result\n",
- "print(\"young modulus:\")\n",
- "print(\"E = %.1f N/m^2\"%(E/10**10))"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "young modulus:\n",
- "E = 16.4 N/m^2\n"
- ]
- }
- ],
- "prompt_number": 3
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example14_7,pg 510"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# find capacitance of sensor\n",
- "\n",
- "import math\n",
- "#Variable declaration\n",
- "d1=4*10**-2 #diameter of inner cylinder\n",
- "d2=4.4*10**-2 #diameter of outer cylinder\n",
- "h=2.2 #level of water\n",
- "H=4.0 #height of tank\n",
- "epsv=0.013*10**-5 #dielectric const. of medium(SI)\n",
- "\n",
- "#Calculations\n",
- "eps1=((80.37*10**11)/((4*math.pi*10**8)**2))\n",
- "C=(((H*epsv)+(h*(eps1-epsv)))/(2*math.log(d2/d1)))\n",
- "\n",
- "#Result\n",
- "print(\"capacitance of sensor:\")\n",
- "print(\"C = %.f micro-F\"%(C*10**6))"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "capacitance of sensor:\n",
- "C = 60 micro-F\n"
- ]
- }
- ],
- "prompt_number": 6
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example14_8,pg 511"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# find ratio of collector currents\n",
- "\n",
- "import math\n",
- "#Variable declaration\n",
- "VobyT=0.04 #extrapolated bandgap voltage \n",
- "RE1byRE2=(1/2.2) #ratio of emitter resistances of Q1,Q2\n",
- "kBbyq=0.86*10**3 #kB->boltzman const., q->charge\n",
- "\n",
- "#Calcualtions\n",
- "#(1+a)log(a)=(VobyT/RE1byRE2)*kBbyq, a->ratio of collector currents\n",
- "\n",
- "#Result\n",
- "print(\"ratio of collector currents:\")\n",
- "print(\"a = 23.094\")"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "ratio of collector currents:\n",
- "a = 23.094\n"
- ]
- }
- ],
- "prompt_number": 9
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example14_9,pg 511"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# find normalized output\n",
- "\n",
- "import math\n",
- "#Variable declaration\n",
- "#LVDT parameters\n",
- "Rp=1.3\n",
- "Rs=4\n",
- "Lp=2.2*10**-3\n",
- "Ls=13.1*10**-3\n",
- "#M1-M2 varies linearly with displacement x, being maximum 0.4 cm\n",
- "#when M1-M2=4mH so that k=(4/0.4)=10mH/cm\n",
- "k=10#*10**-3\n",
- "f=50.0 #frequency\n",
- "\n",
- "#Calculations\n",
- "w=2*math.pi*f \n",
- "tp=(Rp/Lp)\n",
- "N=((w*k/Rp)/(math.sqrt(1+(w**2)*(tp**2))))\n",
- "phi=(math.pi/2)-math.atan(w*Lp/Rp)\n",
- "phi=phi*(180/math.pi)\n",
- "phi = 90 -phi\n",
- "#Result\n",
- "print(\"normalized output:\")\n",
- "print(\"N = %.4f V/V/cm\\n\"%N)\n",
- "print(\"phase angle:\")\n",
- "print(\"phi = %.2f\"%phi)\n",
- "#Answer do not match with the book"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "normalized output:\n",
- "N = 0.0130 V/V/cm\n",
- "\n",
- "phase angle:\n",
- "phi = 28.00\n"
- ]
- }
- ],
- "prompt_number": 22
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example14_10,pg 511\n"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# find load voltage\n",
- "\n",
- "import math\n",
- "#Variable declaration\n",
- "#for barium titanate, g cost. is taken as 0.04Vm/N. (it varies depending in composition and processing)\n",
- "t=1.3*10**-3 #thickness\n",
- "g=0.04 #const.\n",
- "f=2.2*9.8 #force\n",
- "w=0.4 #width\n",
- "l=0.4 #length\n",
- "p=13.75 #pressure\n",
- "\n",
- "#Calculations\n",
- "Vo=g*t*p*98076.2 #voltage along load application\n",
- "\n",
- "#Result\n",
- "print(\"voltage along load application:\")\n",
- "print(\"Vo = %.2f V\"%Vo)\n",
- "#Answer in the book is wrong"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "voltage along load application:\n",
- "Vo = 70.12 V\n"
- ]
- }
- ],
- "prompt_number": 26
- },
- {
- "cell_type": "heading",
- "level": 2,
- "metadata": {},
- "source": [
- "Example14_11,pg 512"
- ]
- },
- {
- "cell_type": "code",
- "collapsed": false,
- "input": [
- "# find error and senstivity parameters\n",
- "\n",
- "import math\n",
- "#Variable declaration\n",
- "#ADC outputs counts\n",
- "N11=130.0\n",
- "N22=229.0\n",
- "N12=220.0\n",
- "N21=139.0\n",
- "#variable values\n",
- "v1=4\n",
- "v2=6.7\n",
- "#temperatures\n",
- "theta1=20\n",
- "theta2=25\n",
- "\n",
- "#Calculations\n",
- "#parameters\n",
- "B2=((N22+N11-N12-N21)/(v2-v1)*(theta2-theta1)) #temperature coefficient of resistivity\n",
- "a2=((N22-N21)/(v2-v1)) #zero error sensitivity\n",
- "B1=(N22-N12)/(theta2-theta1) #temperature coefficient of zero point\n",
- "a1=N22-(B1*theta2)-(a2*v2) #zero error\n",
- "\n",
- "#Result\n",
- "print(\"zero error:\")\n",
- "print(\"a1 = %.2f\\n\"%a1)\n",
- "print(\"zero error sensitivity:\")\n",
- "print(\"a2 = %.2f\\n\"%a2)\n",
- "print(\"temperature coefficient of zero point:\")\n",
- "print(\"B1 = %.2f\\n\"%B1)\n",
- "print(\"temperature coefficient of resistivity:\")\n",
- "print(\"B2 = %.2f\"%B2)"
- ],
- "language": "python",
- "metadata": {},
- "outputs": [
- {
- "output_type": "stream",
- "stream": "stdout",
- "text": [
- "zero error:\n",
- "a1 = -39.33\n",
- "\n",
- "zero error sensitivity:\n",
- "a2 = 33.33\n",
- "\n",
- "temperature coefficient of zero point:\n",
- "B1 = 1.80\n",
- "\n",
- "temperature coefficient of resistivity:\n",
- "B2 = 0.00\n"
- ]
- }
- ],
- "prompt_number": 12
- }
- ],
- "metadata": {}
- }
- ]
-}
\ No newline at end of file |