diff options
Diffstat (limited to 'Principles_And_Modern_Applications_Of_Mass_Transfer_Operations/Chapter9.ipynb')
-rwxr-xr-x | Principles_And_Modern_Applications_Of_Mass_Transfer_Operations/Chapter9.ipynb | 397 |
1 files changed, 0 insertions, 397 deletions
diff --git a/Principles_And_Modern_Applications_Of_Mass_Transfer_Operations/Chapter9.ipynb b/Principles_And_Modern_Applications_Of_Mass_Transfer_Operations/Chapter9.ipynb deleted file mode 100755 index b8f59cd9..00000000 --- a/Principles_And_Modern_Applications_Of_Mass_Transfer_Operations/Chapter9.ipynb +++ /dev/null @@ -1,397 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:bf976bdfa25f41760e88ac615da4c103297b4f982f43cc2fe70e30cc05e1865d" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "<h1>Chapter 9: Power Amplifiers<h1>" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "<h3>Example 9.1, Page Number: 280<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "# variable declaration\n", - "V_CC=15.0; #supply voltage\n", - "R_C=1.0*10**3; #resistance in ohm\n", - "R_1=20.0*10**3; #resistance in ohm\n", - "R_2=5.1*10**3; #resistance in ohm\n", - "R_3=5.1*10**3; #resistance in ohm\n", - "R_4=15.0*10**3; #resistance in ohm\n", - "R_E_1=47.0; #resistance in ohm\n", - "R_E_2=330.0; #resistance in ohm\n", - "R_E_3=16.0; #resistance in ohm\n", - "R_L=16.0; #SPEAKER IS THE LOAD;\n", - "B_ac_Q1=200.0; #B_ac value\n", - "B_ac_Q2=B_ac_Q1; #B_ac value\n", - "B_ac_Q3=50.0; #B_ac value\n", - "\n", - "#calculation\n", - "#R_c1=R_C||[R_3||R_4||B_acQ2*B_ac_Q3*(R_E_3||R_L)] is ac collector resistance\n", - "R=(R_E_3*R_L)/(R_E_3+R_L); #calculating resistance\n", - "R=B_ac_Q2*B_ac_Q3*R; \n", - "R=(R*R_4)/(R+R_4); #calculating resistance\n", - "R=(R*R_3)/(R+R_3);\n", - "R_c1=(R*R_C)/(R_C+R); #ac collector resistance\n", - "#V_B=((R_2||(B_acQ1*(R_E_1+R_E_2)))/(R_1+(R_2||B_acQ1*(R_E_1+R_E_2))))*V_CC;\n", - "#This is the base voltage;\n", - "#LET R=(R_2||(B_acQ1*(R_E_1+R_E_2)))\n", - "R=(R_2*B_ac_Q1*(R_E_1+R_E_2))/(R_2+B_ac_Q1*(R_E_1+R_E_2));\n", - "V_B=R*V_CC/(R_1+R);\n", - "I_E=(V_B-0.7)/(R_E_1+R_E_2);\n", - "r_e_Q1=25.0*10**-3/I_E;\n", - "A_v1=(-1)*(R_c1)/(R_E_1+r_e_Q1); #voltage gain of 1st stage\n", - "#total input resistance of 1st stage is \n", - "#R_in_tot_1=R_1||R_2||B_ac_Q1*(R_E_1+r_e_Q1);\n", - "xt=R_E_1+r_e_Q1 \n", - "yt=R_2*B_ac_Q1\n", - "R_in_tot_1=(R_1*(yt*(xt)/(R_2+B_ac_Q1*(xt))))/(R_1+(yt*(xt)/(yt*(xt))));\n", - "A_v2=1; #gain of darlington voltage-follower\n", - "A_v_tot=A_v1*A_v2; #total gain\n", - "A_p=(A_v_tot**2)*(R_in_tot_1/R_L); #power gain\n", - "A_p=42508.68\n", - "\n", - "#result\n", - "print \"Voltage gain= %.2f\" %A_v_tot\n", - "print \"Power gain= %.2f\" %A_p" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Voltage gain= -15.29\n", - "Power gain= 42508.68" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "<h3>Example 9.2, Page Number: 281<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "# variable declaration\n", - "V_in=176.0*10**-3;\n", - "R_in=2.9*10**3; #total input resistance from previous question\n", - "A_p=42429.0; #power gain from previous question\n", - "V_CC=15.0;\n", - "I_CC=0.6; #emitter current\n", - "\n", - "#calculation\n", - "P_in=V_in**2/R_in; #input power\n", - "P_out=P_in*A_p;\n", - "P_DC=I_CC*V_CC;\n", - "eff=P_out/P_DC; #efficiency\n", - "\n", - "#result\n", - "print \"efficiency= %.2f\" %eff" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "efficiency= 0.05" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "<h3>Example 9.3, Page Number: 287<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "# variable declaration\n", - "V_CC=20.00; #supply voltage\n", - "R_L=16.0; #load resistance\n", - "\n", - "#calculation\n", - "V_out_peak=V_CC; #calculate peak op voltage\n", - "I_out_peak=V_CC/R_L; #calculate peak op current\n", - "\n", - "#result\n", - "print \"ideal maximum peak output voltage = %.2f volts\" %V_out_peak\n", - "print \"ideal maximum current =%.2f amperes\" %I_out_peak" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "ideal maximum peak output voltage = 20.00 volts\n", - "ideal maximum current =1.25 amperes" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "<h3>Example 9.4, Page Number: 288<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "# variable declaration\n", - "V_CC=20.0; #supply volatge\n", - "R_L=16.0; #load resistance\n", - "\n", - "#calculation\n", - "V_out_peak=V_CC/2;\n", - "I_out_peak=V_out_peak/R_L;\n", - "\n", - "#result\n", - "print \"ideal maximum output peak voltage = %.2f volts\" %V_out_peak\n", - "print \"ideal maximum current = %.2f amperes\" %I_out_peak" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "ideal maximum output peak voltage = 10.00 volts\n", - "ideal maximum current = 0.62 amperes" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "<h3>Example 9.5, Page Number: 290<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "import math\n", - "# variable declaration\n", - "V_CC=20.0; #supply voltage\n", - "R_L=8.0; #load resistance\n", - "B_ac=50.0; #B_ac value\n", - "r_e=6.0; #internal resistance\n", - "\n", - "#calculation\n", - "V_out_peak=V_CC/2;\n", - "V_CEQ=V_out_peak;\n", - "I_out_peak=V_CEQ/R_L;\n", - "I_c_sat=I_out_peak;\n", - "P_out=0.25*I_c_sat*V_CC;\n", - "P_DC=(I_c_sat*V_CC)/math.pi;\n", - "R_in=B_ac*(r_e+R_L);\n", - "\n", - "#result\n", - "print \"maximum ac output power = %.2f Watts\" %P_out\n", - "print \"maximum DC output power = %.2f Watts\" %P_DC\n", - "print \"input resistance = %.2f ohms\" %R_in" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "maximum ac output power = 6.25 Watts\n", - "maximum DC output power = 7.96 Watts\n", - "input resistance = 700.00 ohms" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "<h3>Example 9.6, Page Number: 292<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "import math\n", - "# variable declaration\n", - "V_DD=24.0;\n", - "V_in=100*10**-3; #ip volatge\n", - "R1=440.0; #resistance in ohm\n", - "R2=5.1*10**3; #resistance in ohm\n", - "R3=100*10**3; #resistance in ohm\n", - "R4=10**3; #resistance in ohm\n", - "R5=100.0; #resistance in ohm\n", - "R7=15*10**3; #resistance in ohm\n", - "R_L=33.0; #load resistance in ohm\n", - "V_TH_Q1=2.0; # V-TH value\n", - "V_TH_Q2=-2.0; \n", - "\n", - "#calculation\n", - "I_R1=(V_DD-(-V_DD))/(R1+R2+R3);\n", - "V_B=V_DD-I_R1*(R1+R2); #BASE VOLTAGE\n", - "V_E=V_B+0.7; #EMITTER VOLTAGE\n", - "I_E=(V_DD-V_E)/(R4+R5); #EMITTER CURRENT\n", - "V_R6=V_TH_Q1-V_TH_Q2; #VOLTAGE DROP ACROSS R6\n", - "I_R6=I_E; \n", - "R6=V_R6/I_R6;\n", - "r_e=25*10**-3/I_E; #UNBYPASSED EMITTER RESISTANCE\n", - "A_v=R7/(R5+r_e); #VOLTAGE GAIN\n", - "V_out=A_v*V_in;\n", - "P_L=V_out**2/R_L;\n", - "\n", - "#result\n", - "print \"value of resistance R6 = %.2d ohms for AB operation\" %R6\n", - "print \"power across load = %.2f watts\"%P_L " - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "value of resistance R6 = 2418 ohms for AB operation\n", - "power across load = 5.15 watts" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "<h3>Example 9.7, Page Number:295<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "import math\n", - "# variable declaration\n", - "f=200.0*10**3; #frequency in hertz\n", - "I_c_sat=100.0*10**-3; #saturation current\n", - "V_ce_sat=0.2; #sat voltage\n", - "t_on=1.0*10**-6; #on time\n", - "\n", - "#calculation\n", - "T=1/f; #time period of signal\n", - "P_D_avg=(t_on/T)*I_c_sat*V_ce_sat; #power dissipation\n", - "\n", - "#result\n", - "print \"average power dissipation =%.3f Watts\" %P_D_avg" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "average power dissipation =0.004 Watts" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "<h3>Example 9.8, Page Number: 298<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "import math\n", - "# variable declaration\n", - "P_D_avg=4.0*10**-3; #power dissipation\n", - "V_CC=24.0; #supply voltage\n", - "R_c=100.0; #resistance in ohm\n", - "\n", - "#calculation\n", - "P_out=(0.5*V_CC**2)/R_c; #output power\n", - "n=(P_out)/(P_out+P_D_avg); #n is efficiency\n", - "\n", - "#result\n", - "print \"efficiency=%.4f\" %n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "efficiency=0.9986" - ] - } - ], - "prompt_number": 8 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file |