diff options
Diffstat (limited to 'Principles_And_Modern_Applications_Of_Mass_Transfer_Operations/Chapter3.ipynb')
-rwxr-xr-x | Principles_And_Modern_Applications_Of_Mass_Transfer_Operations/Chapter3.ipynb | 396 |
1 files changed, 0 insertions, 396 deletions
diff --git a/Principles_And_Modern_Applications_Of_Mass_Transfer_Operations/Chapter3.ipynb b/Principles_And_Modern_Applications_Of_Mass_Transfer_Operations/Chapter3.ipynb deleted file mode 100755 index c21cf09b..00000000 --- a/Principles_And_Modern_Applications_Of_Mass_Transfer_Operations/Chapter3.ipynb +++ /dev/null @@ -1,396 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:7d54e3690fc412ff890e6ea2f39f46cb8c03d3ea660ea034447f2497647b95ed" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "<h1>Chapter 3: Special-purpose Diodes<h1>" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "<h3>Example 3.1, Page Number:88<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "%pylab inline" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "\n", - "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n", - "For more information, type 'help(pylab)'." - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "# variable declaration\n", - "delVZ=50*10**-3; #voltage in volts, from graph\n", - "delIZ=5*10**-3; #current in amperes, from rgraph\n", - "\n", - "#calculation\n", - "ZZ=delVZ/delIZ; #zener impedence\n", - "\n", - "# result\n", - "print \"zener impedance = %d ohm \" %ZZ" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "zener impedance = 10 ohm " - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "<h3>Example 3.2, Page Number:89<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "# variable declaration\n", - "I_ZT=37*10**-3; #IN AMPERES\n", - "V_ZT=6.80; #IN VOLTS\n", - "Z_ZT=3.50; #IN OHMS\n", - "I_Z=50*10**-3; #IN AMPERES\n", - "\n", - "#calculation\n", - "DEL_I_Z=I_Z-I_ZT; #change current\n", - "DEL_V_Z=DEL_I_Z*Z_ZT; #change voltage\n", - "V_Z=V_ZT+DEL_V_Z; #voltage across zener terminals\n", - "print \"voltage across zener terminals when current is 50 mA = %.3f volts\" %V_Z\n", - "I_Z=25*10**-3; #IN AMPERES\n", - "DEL_I_Z=I_Z-I_ZT; #change current\n", - "DEL_V_Z=DEL_I_Z*Z_ZT; #change voltage\n", - "V_Z=V_ZT+DEL_V_Z; #voltage across zener terminals\n", - "\n", - "#result\n", - "print \"voltage across zener terminals when current is 25 mA = %.3f volts\" %V_Z" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "voltage across zener terminals when current is 50 mA = 6.845 volts\n", - "voltage across zener terminals when current is 25 mA = 6.758 volts" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "<h3>Example 3.3, Page Number:90<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "# variable declaration\n", - "V_Z=8.2; #8.2 volt zener diode\n", - "TC=0.0005; #Temperature coefficient (per degree celsius)\n", - "T1=60; #Temperature 1 in celsius\n", - "T2=25; #Temperature 2 in celsius\n", - "\n", - "#calculation\n", - "DEL_T=T1-T2; #change in temp\n", - "del_V_Z=V_Z*TC*DEL_T; #change in voltage\n", - "voltage=V_Z+del_V_Z; #zener voltage\n", - "\n", - "#result\n", - "print \"zener voltage at 60 degree celsius = %.3f volt\" %voltage" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "zener voltage at 60 degree celsius = 8.343 volt" - ] - } - ], - "prompt_number": 4 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "<h3>Example 3.4, Page Number:90<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "# variable declaration\n", - "P_D_max=400*10**-3; #power in watts\n", - "df=3.2*10**-3 #derating factor in watts per celsius\n", - "del_T=(90-50); #in celsius, temperature difference\n", - "\n", - "#calculation\n", - "P_D_deru=P_D_max-df*del_T; #power dissipated\n", - "P_D_der=P_D_deru*1000;\n", - "\n", - "#result\n", - "print \"maximum power dissipated at 90 degree celsius = %d mW\" %P_D_der" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "maximum power dissipated at 90 degree celsius = 272 mW" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "<h3>Example 3.5, Page Number: 92<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "# variable declaration\n", - "V_Z=5.1;\n", - "I_ZT=49*10**-3;\n", - "I_ZK=1*10**-3;\n", - "Z_Z=7;\n", - "R=100;\n", - "P_D_max=1;\n", - "\n", - "#calculation\n", - "V_out=V_Z-(I_ZT-I_ZK)*Z_Z; #output voltage at I_ZK\n", - "V_IN_min=I_ZK*R+V_out; #input voltage\n", - "I_ZM=P_D_max/V_Z; #current\n", - "V_out=V_Z+(I_ZM-I_ZT)*Z_Z; #output voltage at I_ZM\n", - "V_IN_max=I_ZM*R+V_out; #max input voltage\n", - "\n", - "#result\n", - "print \"maximum input voltage regulated by zener diode = %.3f volts\" %V_IN_max\n", - "print \"minimum input voltage regulated by zener diode = %.3f volts\" %V_IN_min" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "maximum input voltage regulated by zener diode = 25.737 volts\n", - "minimum input voltage regulated by zener diode = 4.864 volts" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "<h3>Example 3.6, Page Number: 93<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "# variable declaration\n", - "V_Z=12.0; #voltage in volt\n", - "V_IN=24.0; #ip voltage in volt\n", - "I_ZK=0.001; #current in ampere\n", - "I_ZM=0.050; #current in ampere \n", - "Z_Z=0; #impedence\n", - "R=470; #resistance in ohm\n", - "\n", - "#calculation\n", - "#when I_L=0, I_Z is max and is equal to the total circuit current I_T\n", - "I_T=(V_IN-V_Z)/R; #current\n", - "I_Z_max=I_T; #max current\n", - "if I_Z_max<I_ZM : # condition for min currert \n", - " I_L_min=0;\n", - "\n", - "I_L_max=I_T-I_ZK; #max current\n", - "R_L_min=V_Z/I_L_max; #min resistance\n", - "\n", - "#result\n", - "print \"minimum value of load resistance = %.2f ohm\" %R_L_min\n", - "print \"minimum curent = %.3f ampere\" %I_L_min\n", - "print \"maximum curent = %.3f ampere\" %I_L_max" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "minimum value of load resistance = 489.16 ohm\n", - "minimum curent = 0.000 ampere\n", - "maximum curent = 0.025 ampere" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "<h3>Example 3.7, Page Number: 94<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "# variable declaration\n", - "V_IN=24.0; #voltage in volt\n", - "V_Z=15.0; #voltage in volt\n", - "I_ZK=0.25*10**-3; #current in ampere\n", - "I_ZT=17*10**-3; #current in ampere\n", - "Z_ZT=14.0; #impedence\n", - "P_D_max=1.0; #max power dissipation\n", - "\n", - "#calculation\n", - "V_out_1=V_Z-(I_ZT-I_ZK)*Z_ZT; #output voltage at I_ZK\n", - "print \"output voltage at I_ZK = %.2f volt\" %V_out_1\n", - "I_ZM=P_D_max/V_Z;\n", - "\n", - "V_out_2=V_Z+(I_ZM-I_ZT)*Z_ZT; #output voltage at I_ZM\n", - "print \"output voltage a I_ZM = %.2f volt\" %V_out_2\n", - "R=(V_IN-V_out_2)/I_ZM; #resistance\n", - "print \"value of R for maximum zener current, no load = %.2f ohm\" %R\n", - "print \"closest practical value is 130 ohms\"\n", - "R=130.0;\n", - "#for minimum load resistance(max load current) zener current is minimum (I_ZK)\n", - "I_T=(V_IN-V_out_1)/R; #current\n", - "I_L=I_T-I_ZK; #current\n", - "R_L_min=V_out_1/I_L; #minimum load resistance\n", - "\n", - "#result\n", - "print \"minimum load resistance = %.2f ohm\" %R_L_min" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "output voltage at I_ZK = 14.77 volt\n", - "output voltage a I_ZM = 15.70 volt\n", - "value of R for maximum zener current, no load = 124.57 ohm\n", - "closest practical value is 130 ohms\n", - "minimum load resistance = 208.60 ohm" - ] - } - ], - "prompt_number": 8 - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "<h3>Example 3.8, Page Number: 96<h3>" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "\n", - "\n", - "#variable declaration\n", - "V_p_in=10.0; #Peak input voltage\n", - "V_th=0.7; #forward biased zener\n", - "V_Z1=5.1;\n", - "V_Z2=3.3;\n", - "\n", - "V_p_in=20.0;\n", - "V_Z1=6.2;\n", - "V_Z2=15.0;\n", - "\n", - "#result\n", - "print('max voltage = %.1f V'%(V_Z1+V_th))\n", - "print('min voltage = %.1f V'%(-(V_Z2+V_th)))" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "max voltage = 6.9 V\n", - "min voltage = -15.7 V" - ] - } - ], - "prompt_number": 9 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file |