diff options
Diffstat (limited to 'Principles_And_Modern_Applications_Of_Mass_Transfer_Operations/Chapter3.ipynb')
-rw-r--r-- | Principles_And_Modern_Applications_Of_Mass_Transfer_Operations/Chapter3.ipynb | 503 |
1 files changed, 261 insertions, 242 deletions
diff --git a/Principles_And_Modern_Applications_Of_Mass_Transfer_Operations/Chapter3.ipynb b/Principles_And_Modern_Applications_Of_Mass_Transfer_Operations/Chapter3.ipynb index 41e63a83..c21cf09b 100644 --- a/Principles_And_Modern_Applications_Of_Mass_Transfer_Operations/Chapter3.ipynb +++ b/Principles_And_Modern_Applications_Of_Mass_Transfer_Operations/Chapter3.ipynb @@ -1,377 +1,396 @@ { "metadata": { - "name": "Chapter_3" - }, - "nbformat": 2, + "name": "", + "signature": "sha256:7d54e3690fc412ff890e6ea2f39f46cb8c03d3ea660ea034447f2497647b95ed" + }, + "nbformat": 3, + "nbformat_minor": 0, "worksheets": [ { "cells": [ { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h1>Chapter 3: Special-purpose Diodes<h1>" ] - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 3.1, Page Number:88<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ "%pylab inline" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "", - "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].", + "\n", + "Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n", "For more information, type 'help(pylab)'." ] } - ], + ], "prompt_number": 1 - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "''' To find Zener Impedence'''", - "", - "# variable declaration", - "delVZ=50*10**-3; #voltage in volts, from graph", - "delIZ=5*10**-3; #current in amperes, from rgraph", - "", - "#calculation", - "ZZ=delVZ/delIZ; #zener impedence", - "", - "# result", + "\n", + "\n", + "# variable declaration\n", + "delVZ=50*10**-3; #voltage in volts, from graph\n", + "delIZ=5*10**-3; #current in amperes, from rgraph\n", + "\n", + "#calculation\n", + "ZZ=delVZ/delIZ; #zener impedence\n", + "\n", + "# result\n", "print \"zener impedance = %d ohm \" %ZZ" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "zener impedance = 10 ohm " ] } - ], + ], "prompt_number": 2 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 3.2, Page Number:89<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "''' Voltage accross zener terminals'''", - "", - "# variable declaration", - "I_ZT=37*10**-3; #IN AMPERES", - "V_ZT=6.80; #IN VOLTS", - "Z_ZT=3.50; #IN OHMS", - "I_Z=50*10**-3; #IN AMPERES", - "", - "#calculation", - "DEL_I_Z=I_Z-I_ZT; #change current", - "DEL_V_Z=DEL_I_Z*Z_ZT; #change voltage", - "V_Z=V_ZT+DEL_V_Z; #voltage across zener terminals", - "print \"voltage across zener terminals when current is 50 mA = %.3f volts\" %V_Z", - "I_Z=25*10**-3; #IN AMPERES", - "DEL_I_Z=I_Z-I_ZT; #change current", - "DEL_V_Z=DEL_I_Z*Z_ZT; #change voltage", - "V_Z=V_ZT+DEL_V_Z; #voltage across zener terminals", - "", - "#result", + "\n", + "# variable declaration\n", + "I_ZT=37*10**-3; #IN AMPERES\n", + "V_ZT=6.80; #IN VOLTS\n", + "Z_ZT=3.50; #IN OHMS\n", + "I_Z=50*10**-3; #IN AMPERES\n", + "\n", + "#calculation\n", + "DEL_I_Z=I_Z-I_ZT; #change current\n", + "DEL_V_Z=DEL_I_Z*Z_ZT; #change voltage\n", + "V_Z=V_ZT+DEL_V_Z; #voltage across zener terminals\n", + "print \"voltage across zener terminals when current is 50 mA = %.3f volts\" %V_Z\n", + "I_Z=25*10**-3; #IN AMPERES\n", + "DEL_I_Z=I_Z-I_ZT; #change current\n", + "DEL_V_Z=DEL_I_Z*Z_ZT; #change voltage\n", + "V_Z=V_ZT+DEL_V_Z; #voltage across zener terminals\n", + "\n", + "#result\n", "print \"voltage across zener terminals when current is 25 mA = %.3f volts\" %V_Z" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "voltage across zener terminals when current is 50 mA = 6.845 volts", + "voltage across zener terminals when current is 50 mA = 6.845 volts\n", "voltage across zener terminals when current is 25 mA = 6.758 volts" ] } - ], + ], "prompt_number": 3 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 3.3, Page Number:90<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "''' Zener Voltage'''", - "", - "# variable declaration", - "V_Z=8.2; #8.2 volt zener diode", - "TC=0.0005; #Temperature coefficient (per degree celsius)", - "T1=60; #Temperature 1 in celsius", - "T2=25; #Temperature 2 in celsius", - "", - "#calculation", - "DEL_T=T1-T2; #change in temp", - "del_V_Z=V_Z*TC*DEL_T; #change in voltage", - "voltage=V_Z+del_V_Z; #zener voltage", - "", - "#result", + "\n", + "\n", + "# variable declaration\n", + "V_Z=8.2; #8.2 volt zener diode\n", + "TC=0.0005; #Temperature coefficient (per degree celsius)\n", + "T1=60; #Temperature 1 in celsius\n", + "T2=25; #Temperature 2 in celsius\n", + "\n", + "#calculation\n", + "DEL_T=T1-T2; #change in temp\n", + "del_V_Z=V_Z*TC*DEL_T; #change in voltage\n", + "voltage=V_Z+del_V_Z; #zener voltage\n", + "\n", + "#result\n", "print \"zener voltage at 60 degree celsius = %.3f volt\" %voltage" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "zener voltage at 60 degree celsius = 8.343 volt" ] } - ], + ], "prompt_number": 4 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 3.4, Page Number:90<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "''' Power dissipation'''", - "", - "# variable declaration", - "P_D_max=400*10**-3; #power in watts", - "df=3.2*10**-3 #derating factor in watts per celsius", - "del_T=(90-50); #in celsius, temperature difference", - "", - "#calculation", - "P_D_deru=P_D_max-df*del_T; #power dissipated", - "P_D_der=P_D_deru*1000;", - "", - "#result", + "\n", + "\n", + "# variable declaration\n", + "P_D_max=400*10**-3; #power in watts\n", + "df=3.2*10**-3 #derating factor in watts per celsius\n", + "del_T=(90-50); #in celsius, temperature difference\n", + "\n", + "#calculation\n", + "P_D_deru=P_D_max-df*del_T; #power dissipated\n", + "P_D_der=P_D_deru*1000;\n", + "\n", + "#result\n", "print \"maximum power dissipated at 90 degree celsius = %d mW\" %P_D_der" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ "maximum power dissipated at 90 degree celsius = 272 mW" ] } - ], + ], "prompt_number": 5 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 3.5, Page Number: 92<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "''' Zener Diode voltage regulation'''", - "", - "# variable declaration", - "V_Z=5.1;", - "I_ZT=49*10**-3;", - "I_ZK=1*10**-3;", - "Z_Z=7;", - "R=100;", - "P_D_max=1;", - "", - "#calculation", - "V_out=V_Z-(I_ZT-I_ZK)*Z_Z; #output voltage at I_ZK", - "V_IN_min=I_ZK*R+V_out; #input voltage", - "I_ZM=P_D_max/V_Z; #current", - "V_out=V_Z+(I_ZM-I_ZT)*Z_Z; #output voltage at I_ZM", - "V_IN_max=I_ZM*R+V_out; #max input voltage", - "", - "#result", - "print \"maximum input voltage regulated by zener diode = %.3f volts\" %V_IN_max", + "\n", + "# variable declaration\n", + "V_Z=5.1;\n", + "I_ZT=49*10**-3;\n", + "I_ZK=1*10**-3;\n", + "Z_Z=7;\n", + "R=100;\n", + "P_D_max=1;\n", + "\n", + "#calculation\n", + "V_out=V_Z-(I_ZT-I_ZK)*Z_Z; #output voltage at I_ZK\n", + "V_IN_min=I_ZK*R+V_out; #input voltage\n", + "I_ZM=P_D_max/V_Z; #current\n", + "V_out=V_Z+(I_ZM-I_ZT)*Z_Z; #output voltage at I_ZM\n", + "V_IN_max=I_ZM*R+V_out; #max input voltage\n", + "\n", + "#result\n", + "print \"maximum input voltage regulated by zener diode = %.3f volts\" %V_IN_max\n", "print \"minimum input voltage regulated by zener diode = %.3f volts\" %V_IN_min" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "maximum input voltage regulated by zener diode = 25.737 volts", + "maximum input voltage regulated by zener diode = 25.737 volts\n", "minimum input voltage regulated by zener diode = 4.864 volts" ] } - ], + ], "prompt_number": 6 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 3.6, Page Number: 93<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "''' Min & Max current'''", - "", - "# variable declaration", - "V_Z=12.0; #voltage in volt", - "V_IN=24.0; #ip voltage in volt", - "I_ZK=0.001; #current in ampere", - "I_ZM=0.050; #current in ampere ", - "Z_Z=0; #impedence", - "R=470; #resistance in ohm", - "", - "#calculation", - "#when I_L=0, I_Z is max and is equal to the total circuit current I_T", - "I_T=(V_IN-V_Z)/R; #current", - "I_Z_max=I_T; #max current", - "if I_Z_max<I_ZM : # condition for min currert ", - " I_L_min=0;", - "", - "I_L_max=I_T-I_ZK; #max current", - "R_L_min=V_Z/I_L_max; #min resistance", - "", - "#result", - "print \"minimum value of load resistance = %.2f ohm\" %R_L_min", - "print \"minimum curent = %.3f ampere\" %I_L_min", + "\n", + "\n", + "# variable declaration\n", + "V_Z=12.0; #voltage in volt\n", + "V_IN=24.0; #ip voltage in volt\n", + "I_ZK=0.001; #current in ampere\n", + "I_ZM=0.050; #current in ampere \n", + "Z_Z=0; #impedence\n", + "R=470; #resistance in ohm\n", + "\n", + "#calculation\n", + "#when I_L=0, I_Z is max and is equal to the total circuit current I_T\n", + "I_T=(V_IN-V_Z)/R; #current\n", + "I_Z_max=I_T; #max current\n", + "if I_Z_max<I_ZM : # condition for min currert \n", + " I_L_min=0;\n", + "\n", + "I_L_max=I_T-I_ZK; #max current\n", + "R_L_min=V_Z/I_L_max; #min resistance\n", + "\n", + "#result\n", + "print \"minimum value of load resistance = %.2f ohm\" %R_L_min\n", + "print \"minimum curent = %.3f ampere\" %I_L_min\n", "print \"maximum curent = %.3f ampere\" %I_L_max" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "minimum value of load resistance = 489.16 ohm", - "minimum curent = 0.000 ampere", + "minimum value of load resistance = 489.16 ohm\n", + "minimum curent = 0.000 ampere\n", "maximum curent = 0.025 ampere" ] } - ], + ], "prompt_number": 7 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 3.7, Page Number: 94<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "''' to find load resistance'''", - "", - "# variable declaration", - "V_IN=24.0; #voltage in volt", - "V_Z=15.0; #voltage in volt", - "I_ZK=0.25*10**-3; #current in ampere", - "I_ZT=17*10**-3; #current in ampere", - "Z_ZT=14.0; #impedence", - "P_D_max=1.0; #max power dissipation", - "", - "#calculation", - "V_out_1=V_Z-(I_ZT-I_ZK)*Z_ZT; #output voltage at I_ZK", - "print \"output voltage at I_ZK = %.2f volt\" %V_out_1", - "I_ZM=P_D_max/V_Z;", - "", - "V_out_2=V_Z+(I_ZM-I_ZT)*Z_ZT; #output voltage at I_ZM", - "print \"output voltage a I_ZM = %.2f volt\" %V_out_2", - "R=(V_IN-V_out_2)/I_ZM; #resistance", - "print \"value of R for maximum zener current, no load = %.2f ohm\" %R", - "print \"closest practical value is 130 ohms\"", - "R=130.0;", - "#for minimum load resistance(max load current) zener current is minimum (I_ZK)", - "I_T=(V_IN-V_out_1)/R; #current", - "I_L=I_T-I_ZK; #current", - "R_L_min=V_out_1/I_L; #minimum load resistance", - "", - "#result", + "\n", + "\n", + "# variable declaration\n", + "V_IN=24.0; #voltage in volt\n", + "V_Z=15.0; #voltage in volt\n", + "I_ZK=0.25*10**-3; #current in ampere\n", + "I_ZT=17*10**-3; #current in ampere\n", + "Z_ZT=14.0; #impedence\n", + "P_D_max=1.0; #max power dissipation\n", + "\n", + "#calculation\n", + "V_out_1=V_Z-(I_ZT-I_ZK)*Z_ZT; #output voltage at I_ZK\n", + "print \"output voltage at I_ZK = %.2f volt\" %V_out_1\n", + "I_ZM=P_D_max/V_Z;\n", + "\n", + "V_out_2=V_Z+(I_ZM-I_ZT)*Z_ZT; #output voltage at I_ZM\n", + "print \"output voltage a I_ZM = %.2f volt\" %V_out_2\n", + "R=(V_IN-V_out_2)/I_ZM; #resistance\n", + "print \"value of R for maximum zener current, no load = %.2f ohm\" %R\n", + "print \"closest practical value is 130 ohms\"\n", + "R=130.0;\n", + "#for minimum load resistance(max load current) zener current is minimum (I_ZK)\n", + "I_T=(V_IN-V_out_1)/R; #current\n", + "I_L=I_T-I_ZK; #current\n", + "R_L_min=V_out_1/I_L; #minimum load resistance\n", + "\n", + "#result\n", "print \"minimum load resistance = %.2f ohm\" %R_L_min" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "output voltage at I_ZK = 14.77 volt", - "output voltage a I_ZM = 15.70 volt", - "value of R for maximum zener current, no load = 124.57 ohm", - "closest practical value is 130 ohms", + "output voltage at I_ZK = 14.77 volt\n", + "output voltage a I_ZM = 15.70 volt\n", + "value of R for maximum zener current, no load = 124.57 ohm\n", + "closest practical value is 130 ohms\n", "minimum load resistance = 208.60 ohm" ] } - ], + ], "prompt_number": 8 - }, + }, { - "cell_type": "markdown", + "cell_type": "markdown", + "metadata": {}, "source": [ "<h3>Example 3.8, Page Number: 96<h3>" ] - }, + }, { - "cell_type": "code", - "collapsed": false, + "cell_type": "code", + "collapsed": false, "input": [ - "'''Zener limiting'''", - "", - "#variable declaration", - "V_p_in=10.0; #Peak input voltage", - "V_th=0.7; #forward biased zener", - "V_Z1=5.1;", - "V_Z2=3.3;", - "", - "V_p_in=20.0;", - "V_Z1=6.2;", - "V_Z2=15.0;", - "", - "#result", - "print('max voltage = %.1f V'%(V_Z1+V_th))", + "\n", + "\n", + "#variable declaration\n", + "V_p_in=10.0; #Peak input voltage\n", + "V_th=0.7; #forward biased zener\n", + "V_Z1=5.1;\n", + "V_Z2=3.3;\n", + "\n", + "V_p_in=20.0;\n", + "V_Z1=6.2;\n", + "V_Z2=15.0;\n", + "\n", + "#result\n", + "print('max voltage = %.1f V'%(V_Z1+V_th))\n", "print('min voltage = %.1f V'%(-(V_Z2+V_th)))" - ], - "language": "python", + ], + "language": "python", + "metadata": {}, "outputs": [ { - "output_type": "stream", - "stream": "stdout", + "output_type": "stream", + "stream": "stdout", "text": [ - "max voltage = 6.9 V", + "max voltage = 6.9 V\n", "min voltage = -15.7 V" ] } - ], + ], "prompt_number": 9 } - ] + ], + "metadata": {} } ] }
\ No newline at end of file |