summaryrefslogtreecommitdiff
path: root/Practical_C_Programming/Chapter_18_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Practical_C_Programming/Chapter_18_1.ipynb')
-rw-r--r--Practical_C_Programming/Chapter_18_1.ipynb62
1 files changed, 54 insertions, 8 deletions
diff --git a/Practical_C_Programming/Chapter_18_1.ipynb b/Practical_C_Programming/Chapter_18_1.ipynb
index ac690274..0369d712 100644
--- a/Practical_C_Programming/Chapter_18_1.ipynb
+++ b/Practical_C_Programming/Chapter_18_1.ipynb
@@ -1,6 +1,7 @@
{
"metadata": {
- "name": "Chapter 18"
+ "name": "",
+ "signature": "sha256:2d44df2c3fb888f51302e9d5a213984c3dfb884f4d72dcb60cfc8091b69443e6"
},
"nbformat": 3,
"nbformat_minor": 0,
@@ -11,25 +12,46 @@
"cell_type": "heading",
"level": 1,
"metadata": {},
- "source": "Chapter 18: Modular Programming"
+ "source": [
+ "Chapter 18: Modular Programming"
+ ]
},
{
"cell_type": "heading",
"level": 3,
"metadata": {},
- "source": "Example 18.2, Page number: 364"
+ "source": [
+ "Example 18.2, Page number: 364"
+ ]
},
{
"cell_type": "code",
"collapsed": false,
- "input": "# Example 18.2\n# To create an infinite array\n\n\n# Variable declaration\narray = [1, 2, 3, 4, 5]\narray_size = 10\nnum = 6\n\n# Calculation\nfor index in range (5, 10) :\n array.insert(index, num)\n num = num + 1\n\n# Result\nprint \"Contents of array of size 10 elements is\", array",
+ "input": [
+ "\n",
+ "\n",
+ "# Variable declaration\n",
+ "array = [1, 2, 3, 4, 5]\n",
+ "array_size = 10\n",
+ "num = 6\n",
+ "\n",
+ "# Calculation\n",
+ "for index in range (5, 10) :\n",
+ " array.insert(index, num)\n",
+ " num = num + 1\n",
+ "\n",
+ "# Result\n",
+ "print \"Contents of array of size 10 elements is\", array"
+ ],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
- "text": "Contents of array of size 10 elements is [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\n"
+ "text": [
+ "Contents of array of size 10 elements is [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\n"
+ ]
}
],
"prompt_number": 1
@@ -38,20 +60,44 @@
"cell_type": "heading",
"level": 3,
"metadata": {},
- "source": "Example 18.3, Page number: 372"
+ "source": [
+ "Example 18.3, Page number: 372"
+ ]
},
{
"cell_type": "code",
"collapsed": false,
- "input": "# Example 18.3\n# To plot a histogram of an array of numbers\n\n\n# Calculation\nimport numpy as np \n\n# hist indicates that there are 0 items in bin #0, 2 in bin #1, 4 in bin #3, 1 in bin #4\n# bin_edges indicates that bin #0 is the interval [0,1), bin #1 is [1,2), ..., bin #3 is [3,4)\n\nhist, bin_edges = np.histogram([1, 1, 2, 2, 2, 2, 3], bins = range(5))\n\n\n# Result\nimport matplotlib.pyplot as plt\nplt.bar(bin_edges[:-1], hist, width=1) and plt.xlim(min(bin_edges), max(bin_edges))\nplt.savefig('histogram.png')\n\nfrom IPython.core.display import Image \nImage(filename='histogram.png')",
+ "input": [
+ "\n",
+ "\n",
+ "# Calculation\n",
+ "import numpy as np \n",
+ "\n",
+ "# hist indicates that there are 0 items in bin #0, 2 in bin #1, 4 in bin #3, 1 in bin #4\n",
+ "# bin_edges indicates that bin #0 is the interval [0,1), bin #1 is [1,2), ..., bin #3 is [3,4)\n",
+ "\n",
+ "hist, bin_edges = np.histogram([1, 1, 2, 2, 2, 2, 3], bins = range(5))\n",
+ "\n",
+ "\n",
+ "# Result\n",
+ "import matplotlib.pyplot as plt\n",
+ "plt.bar(bin_edges[:-1], hist, width=1) and plt.xlim(min(bin_edges), max(bin_edges))\n",
+ "plt.savefig('histogram.png')\n",
+ "\n",
+ "from IPython.core.display import Image \n",
+ "Image(filename='histogram.png')"
+ ],
"language": "python",
"metadata": {},
"outputs": [
{
+ "metadata": {},
"output_type": "pyout",
"png": "iVBORw0KGgoAAAANSUhEUgAAAyAAAAJYCAYAAACadoJwAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzt3X9s1fW9+PHXqSiwcgEHGFoJjivgNuaGJQirXgLu7gJy\n0Vy1rb3DKXHD5KoENeCPqcR03kzznXIJkUXurFQb7i4V55zkqmyaGS8ysWxuc1iZVq5SfhlxuFIG\n5Xz/4NLdrrS0QN9t6eORNJN3P5/j63zylvHkfM5pJpvNZgMAACCBnK4eAAAA6D0ECAAAkIwAAQAA\nkhEgAABAMgIEAABIRoAAAADJCBAAACAZAQIAACQjQAAAgGQECAAAkIwAAQAAkhEgAABAMgIEAABI\nRoAAAADJCBAAACAZAQIAACQjQAAAgGQECAAAkIwAAQAAkhEgAABAMgIEAABIRoAAAADJCBAAACAZ\nAQIAACQjQAAAgGQECAAAkIwAAQAAkhEgAABAMgIEAABIRoAAAADJCBAAACAZAQIAACQjQAAAgGQE\nCAAAkIwAAQAAkhEgAABAMgIEAABIRoAAAADJCBAAACAZAQIAACQjQAAAgGQECAAAkIwAAQAAkhEg\nAABAMgIEAABIRoAAAADJCBAAACAZAQIAACQjQAAAgGQECAAAkIwAAQAAkhEgAABAMgKkA+6///7I\nycmJ888/v13H79mzJ+bNmxfDhg2LAQMGxCWXXBKbNm3q5CkBAKD7ymSz2WxXD9ETfPDBB3HeeedF\nTk5OjBo1Kt588802jz906FD83d/9Xbz55puxaNGiGDJkSDzyyCPxP//zP/HGG2/E6NGjE00OAADd\nhwBpp6uvvjo++uijOHjwYOzevTt+85vftHn8f/7nf8bVV18dVVVVccUVV0RExO7du2Ps2LExc+bM\nqKysTDE2AAB0K27Baodf/OIX8dRTT8WSJUsim81GJpM55jlVVVUxfPjwpviIiBg6dGgUFxfHM888\nEwcOHOjMkQEAoFsSIMfQ2NgYN998c3z729+OcePGtfu8TZs2RUFBQYv1iRMnRn19fdTU1JzMMQEA\noEcQIMfwgx/8ILZu3RplZWUdOq+uri7y8vJarB9Z27Zt20mZDwAAepI+XT1Ad/bRRx/FvffeG/fe\ne28MGTKkQ+c2NDRE3759W6z369cvIiL27dvX4nu7d++O559/Pj73uc9F//79j29oAAA6zb59+6K2\ntjamT58eQ4cO7epxeiQB0oa77747hg4dGjfffHOHz+3fv3/s37+/xXpDQ0PT9//a888/H3PmzOn4\noAAAJPXkk0/GN77xja4eo0cSIK145513YsWKFbFkyZL44IMPmtYbGhriz3/+c7z//vsxcODAOPPM\nM496fl5e3lFvs6qrq4uIiPz8/BbfGzVqVEQc3tBf+MIXTsbT6DUWLFgQS5Ys6eoxehTX7Pi4bh2z\ndu3auOeeeyKiLCJGdfU4Pcz3I+K2rh6iB3kvIu6JsrKyuPTSS7t6mB7F72sd8/vf/z7mzJnT9Oc2\nOk6AtOLDDz+MQ4cOxfz582P+/Pktvj9q1KhYsGBBPPTQQ0c9f/z48fHKK6+0+NSsDRs2RG5ubowd\nO7bFOUduz/rCF75w1Dew07rBgwe7Zh3kmh0f161jfv/73//vP10aEa5bx/woIvztavtVR8Q9MWrU\nKP+NdpDf147PkT+30XECpBXnn39+PP30083iIZvNxt133x2ffvpp/Nu//Vuce+65EXH4VY1PPvkk\nRo8eHX36HL6kV111VVRVVcWaNWviyiuvjIjD7/FYvXp1zJ49O04//fT0TwoAALqYAGnFkCFD4vLL\nL2+x/vDDD0dExGWXXda0duedd0ZFRUXU1tbGyJEjI+JwgEyePDnmzp0bb731VtNPQs9ms3Hfffel\neRIAANDNCJAOymQyLX4Q4dHWcnJyYu3atbFw4cJYunRp7Nu3Ly688MKoqKiIMWPGpBwZAAC6DQHS\nQS+99FKLtfLy8igvL2+xPnjw4FixYkWsWLEixWi9WmlpaVeP0OO4ZsfHdSMde400/L5Gan4QIacE\nv3l2nGt2fFw30rHXSMPva6QmQAAAgGQECAAAkIwAAQAAkhEgAABAMgIEAABIRoAAAADJCBAAACAZ\nAQIAACQjQAAAgGQECAAAkIwAAQAAkhEgAABAMgIEAABIRoAAAADJCBAAACAZAQIAACQjQAAAgGQE\nCAAAkIwAAQAAkhEgAABAMgIEAABIRoAAAADJCBAAACAZAQIAACQjQAAAgGQECAAAkIwAAQAAkhEg\nAABAMgIEAABIRoAAAADJCBAAACAZAQIAACQjQAAAgGQECAAAkIwAAQAAkhEgAABAMgIEAABIRoAA\nAADJCBAAACAZAQIAACQjQAAAgGQECAAAkIwAAQAAkhEgAABAMgIEAABIRoC04Xe/+10UFRXFueee\nG7m5uTFkyJAoLCyMysrKY577+OOPR05OzlG/du7cmWB6AADofvp09QDd2datW+PTTz+N6667LvLz\n86O+vj6qqqrimmuuidra2vjOd75zzMcoKyuLUaNGNVsbNGhQZ40MAADdmgBpw8yZM2PmzJnN1m68\n8caYMGFCPProo+0KkJkzZ0ZBQUFnjQgAAD2KW7A6KCcnJ0aMGBGnn356u47PZrOxd+/eaGxs7OTJ\nAACg+xMg7VBfXx+7d++OP/zhD/Hwww/H888/H4sWLWrXudOmTYtBgwZFbm5uXH755bFly5ZOnhYA\nALovt2C1w6233hqPPvpoRET06dMnli5dGvPmzWvznNzc3Jg7d25MmzYtBg4cGBs3boyHHnooCgsL\no7q6OkaMGJFidAAA6FYESDvccsstUVxcHNu2bYvKysq46aabon///nHttde2ek5RUVEUFRU1/fqy\nyy6L6dOnx5QpU+L++++P5cuXpxgdAAC6FQHSDuedd16cd955ERExZ86cmD59eixYsCCKi4ujf//+\n7X6ciy66KCZNmhTr1q1r87gFCxbE4MGDm62VlpZGaWlpx4cHAOC4rFq1KlatWtVsbc+ePV00zalD\ngByHK6+8Ml588cV4++23Y/z48R06d8SIEVFTU9PmMUuWLPHJWQAAXexofwFcXV0dEyZM6KKJTg3e\nhH4c9u3bFxGHPxGro959990YNmzYyR4JAAB6BAHShl27drVYO3DgQFRUVMSQIUNi3LhxERFRV1cX\nmzdvjoMHD7Z57tq1a6O6ujpmzJjReUMDAEA35hasNsybNy/27t0bU6ZMifz8/Ni+fXtUVlZGTU1N\nlJeXx2mnnRYREXfeeWdUVFREbW1tjBw5MiIiCgsLo6CgICZMmBCDBg2K6urqeOyxx2LkyJFx1113\ndeXTAgCALiNA2nD11VfHD3/4w1i+fHl89NFHMXDgwJg0aVIsW7Ysvva1rzUdl8lkIpPJtDj3ueee\nixdeeCHq6+sjPz8/brjhhli8eLFbsAAA6LUESBtKSkqipKTkmMeVl5dHeXl5s7WysrIoKyvrrNEA\nAKBH8h4QAAAgGQECAAAkI0AAAIBkBAgAAJCMAAEAAJIRIAAAQDICBAAASEaAAAAAyQgQAAAgGQEC\nAAAkI0AAAIBkBAgAAJCMAAEAAJIRIAAAQDICBAAASEaAAAAAyQgQAAAgGQECAAAkI0AAAIBkBAgA\nAJCMAAEAAJIRIAAAQDICBAAASEaAAAAAyQgQAAAgGQECAAAkI0AAAIBkBAgAAJCMAAEAAJIRIAAA\nQDICBAAASEaAAAAAyQgQAAAgGQECAAAkI0AAAIBkBAgAAJCMAAEAAJIRIAAAQDICBAAASEaAAAAA\nyQgQAAAgGQECAAAkI0AAAIBkBAgAAJCMAAEAAJIRIAAAQDICpBW/+93voqioKM4999zIzc2NIUOG\nRGFhYVRWVrbr/D179sS8efNi2LBhMWDAgLjkkkti06ZNnTw1AAB0b326eoDuauvWrfHpp5/Gdddd\nF/n5+VFfXx9VVVVxzTXXRG1tbXznO99p9dxDhw7FrFmz4s0334xFixbFkCFD4pFHHompU6fGG2+8\nEaNHj074TAAAoPsQIK2YOXNmzJw5s9najTfeGBMmTIhHH320zQCpqqqK9evXR1VVVVxxxRUREVFc\nXBxjx46NxYsXt/tVFAAAONW4BasDcnJyYsSIEXH66ae3eVxVVVUMHz68KT4iIoYOHRrFxcXxzDPP\nxIEDBzp7VAAA6JYEyDHU19fH7t274w9/+EM8/PDD8fzzz8eiRYvaPGfTpk1RUFDQYn3ixIlRX18f\nNTU1nTUuAAB0awLkGG699dY466yzYsyYMXH77bfH0qVLY968eW2eU1dXF3l5eS3Wj6xt27atU2YF\nAIDuzntAjuGWW26J4uLi2LZtW1RWVsZNN90U/fv3j2uvvbbVcxoaGqJv374t1vv16xcREfv27eu0\neQEAoDsTIMdw3nnnxXnnnRcREXPmzInp06fHggULori4OPr373/Uc/r37x/79+9vsd7Q0ND0/bYs\nWLAgBg8e3GyttLQ0SktLj+cpAABwHFatWhWrVq1qtrZnz54umubUIUA66Morr4wXX3wx3n777Rg/\nfvxRj8nLyzvqbVZ1dXUREZGfn9/mv2PJkiVHfQ8JAADpHO0vgKurq2PChAldNNGpwXtAOujI7VM5\nOa1fuvHjx0d1dXVks9lm6xs2bIjc3NwYO3Zsp84IAADdlQBpxa5du1qsHThwICoqKmLIkCExbty4\niDj8qsbmzZvj4MGDTcddddVVsWPHjlizZk3T2u7du2P16tUxe/bsY36MLwAAnKrcgtWKefPmxd69\ne2PKlCmRn58f27dvj8rKyqipqYny8vI47bTTIiLizjvvjIqKiqitrY2RI0dGxOEAmTx5csydOzfe\neuutpp+Ens1m47777uvKpwUAAF1KgLTi6quvjh/+8IexfPny+Oijj2LgwIExadKkWLZsWXzta19r\nOi6TyUQmk2l2bk5OTqxduzYWLlwYS5cujX379sWFF14YFRUVMWbMmNRPBQAAug0B0oqSkpIoKSk5\n5nHl5eVRXl7eYn3w4MGxYsWKWLFiRWeMBwAAPZL3gAAAAMkIEAAAIBkBAgAAJCNAAACAZAQIAACQ\njAABAACSESAAAEAyAgQAAEhGgAAAAMkIEAAAIBkBAgAAJCNAAACAZAQIAACQjAABAACSESAAAEAy\nAgQAAEhGgAAAAMkIEAAAIBkBAgAAJCNAAACAZAQIAACQjAABAACSESAAAEAyAgQAAEhGgAAAAMkI\nEAAAIBkBAgAAJCNAAACAZAQIAACQjAABAACSESAAAEAyAgQAAEhGgAAAAMkIEAAAIBkBAgAAJCNA\nAACAZAQIAACQjAABAACSESAAAEAyAgQAAEhGgAAAAMkIEAAAIBkBAgAAJCNAAACAZAQIAACQjAAB\nAACSESBteP311+Omm26KcePGxYABA+Kcc86JkpKSeOedd4557uOPPx45OTlH/dq5c2eC6QEAoPvp\n09UDdGcPPPBArF+/PoqKiuLLX/5y1NXVxbJly6KgoCBee+21GDdu3DEfo6ysLEaNGtVsbdCgQZ01\nMgAAdGsCpA233XZbTJw4Mfr0+ctlKikpifPPPz++973vxRNPPHHMx5g5c2YUFBR05pgAANBjuAWr\nDV/96lebxUdExOjRo+OLX/xibN68uV2Pkc1mY+/evdHY2NgZIwIAQI8iQDoom83Gjh07YujQoe06\nftq0aTFo0KDIzc2Nyy+/PLZs2dLJEwIAQPflFqwOqqysjG3btsV3v/vdNo/Lzc2NuXPnxrRp02Lg\nwIGxcePGeOihh6KwsDCqq6tjxIgRiSYGAIDuQ4B0wObNm+PGG2+MwsLCuPbaa9s8tqioKIqKipp+\nfdlll8X06dNjypQpcf/998fy5cs7e1wAAOh2BEg7bd++PWbNmhVnnnlmVFVVRSaT6fBjXHTRRTFp\n0qRYt25dm8ctWLAgBg8e3GyttLQ0SktLO/zvBADg+KxatSpWrVrVbG3Pnj1dNM2pQ4C0wyeffBIz\nZ86MP/7xj/HKK6/E8OHDj/uxRowYETU1NW0es2TJEp+cBQDQxY72F8DV1dUxYcKELpro1CBAjqGh\noSFmz54dW7ZsiXXr1sXnP//5E3q8d999N4YNG3aSpgMAgJ7Fp2C1obGxMUpKSmLDhg2xevXqmDRp\n0lGP2759e2zevDkOHjzYtLZr164Wx61duzaqq6tjxowZnTYzAAB0Z14BacNtt90Wzz77bMyePTt2\n794dTz75ZLPvz5kzJyIi7rjjjqioqIja2toYOXJkREQUFhZGQUFBTJgwIQYNGhTV1dXx2GOPxciR\nI+Ouu+5K/lwAAKA7ECBt+PWvfx2ZTCaeffbZePbZZ5t9L5PJNAVIJpNp8ab0q6++Op577rl44YUX\nor6+PvLz8+OGG26IxYsXuwULAIBeS4C04aWXXmrXceXl5VFeXt5sraysLMrKyjpjLAAA6LG8BwQA\nAEhGgAAAAMkIEAAAIBkBAgAAJCNAAACAZAQIAACQjAABAACSESAAAEAyAgQAAEhGgAAAAMkIEAAA\nIBkBAgAAJCNAAACAZAQIAACQjAABAACSESAAAEAyAgQAAEhGgAAAAMkIEAAAIBkBAgAAJCNAAACA\nZAQIAACQjAABAACSESAAAEAyAgQAAEhGgAAAAMkIEAAAIBkBAgAAJCNAAACAZAQIAACQjAABAACS\nESAAAEAyAgQAAEhGgAAAAMkIEAAAIBkBAgAAJCNAAACAZAQIAACQjAABAACSESAAAEAyAgQAAEhG\ngAAAAMkIEAAAIBkBAgAAJCNAAACAZAQIAACQjABpxeuvvx433XRTjBs3LgYMGBDnnHNOlJSUxDvv\nvNOu8/fs2RPz5s2LYcOGxYABA+KSSy6JTZs2dfLUAADQvfXp6gG6qwceeCDWr18fRUVF8eUvfznq\n6upi2bJlUVBQEK+99lqMGzeu1XMPHToUs2bNijfffDMWLVoUQ4YMiUceeSSmTp0ab7zxRowePTrh\nMwEAgO5DgLTitttui4kTJ0afPn+5RCUlJXH++efH9773vXjiiSdaPbeqqirWr18fVVVVccUVV0RE\nRHFxcYwdOzYWL14clZWVnT4/AAB0R27BasVXv/rVZvERETF69Oj44he/GJs3b27z3Kqqqhg+fHhT\nfEREDB06NIqLi+OZZ56JAwcOdMrMAADQ3QmQDshms7Fjx44YOnRom8dt2rQpCgoKWqxPnDgx6uvr\no6amprNGBACAbk2AdEBlZWVs27YtSkpK2jyurq4u8vLyWqwfWdu2bVunzAcAAN2d94C00+bNm+PG\nG2+MwsLCuPbaa9s8tqGhIfr27dtivV+/fhERsW/fvk6ZETrixRdfjJ07d3b1GJziXn311a4eAYBu\nRoC0w/bt22PWrFlx5plnRlVVVWQymTaP79+/f+zfv7/FekNDQ9P327JgwYIYPHhws7XS0tIoLS3t\n4ORwdC+++GL8wz/8Q1ePAQDd2qpVq2LVqlXN1vbs2dNF05w6BMgxfPLJJzFz5sz44x//GK+88koM\nHz78mOfk5eUd9Tarurq6iIjIz89v8/wlS5Yc9T0kcLL85ZWPJyPiC105Cqe8tRFxT1cPAXBcjvYX\nwNXV1TFhwoQumujUIEDa0NDQELNnz44tW7bEunXr4vOf/3y7zhs/fny88sorkc1mm71asmHDhsjN\nzY2xY8d21sjQQV+ICLFLZ/p9Vw8AQDfjTeitaGxsjJKSktiwYUOsXr06Jk2adNTjtm/fHps3b46D\nBw82rV111VWxY8eOWLNmTdPa7t27Y/Xq1TF79uw4/fTTO31+AADojrwC0orbbrstnn322Zg9e3bs\n3r07nnzyyWbfnzNnTkRE3HHHHVFRURG1tbUxcuTIiDgcIJMnT465c+fGW2+91fST0LPZbNx3333J\nnwsAAHQXAqQVv/71ryOTycSzzz4bzz77bLPvZTKZpgDJZDIt3pSek5MTa9eujYULF8bSpUtj3759\nceGFF0ZFRUWMGTMm2XMAAIDuxi1YrXjppZeisbExDh061OKrsbGx6bjy8vJobGxsevXjiMGDB8eK\nFSti165d8emnn8bPf/5zbywHAKDXEyAAAEAyAgQAAEhGgAAAAMkIEAAAIBkBAgAAJCNAAACAZAQI\nAACQjAABAACSESAAAEAyAgQAAEhGgAAAAMkIEAAAIBkBAgAAJCNAAACAZAQIAACQjAABAACSESAA\nAEAyAgQAAEhGgAAAAMkIEAAAIBkBAgAAJCNAAACAZAQIAACQjAABAACSESAAAEAyAgQAAEhGgAAA\nAMkIEAAAIBkBAgAAJCNAAACAZAQIAACQjAABAACSESAAAEAyAgQAAEhGgAAAAMkIEAAAIBkBAgAA\nJCNAAACAZAQIAACQjAABAACSESAAAEAyAgQAAEhGgAAAAMkIEAAAIBkBAgAAJCNAAACAZARIG/70\npz/F4sWLY8aMGfHZz342cnJyYuXKle069/HHH4+cnJyjfu3cubOTJwcAgO6pT1cP0J3t2rUrysrK\n4pxzzonx48fHyy+/HJlMpkOPUVZWFqNGjWq2NmjQoJM5JgAA9BgCpA35+fmxffv2OOuss+KNN96I\niRMndvgxZs6cGQUFBZ0wHQAA9DxuwWrDGWecEWeddVZERGSz2eN6jGw2G3v37o3GxsaTORoAAPRI\nAqSTTZs2LQYNGhS5ublx+eWXx5YtW7p6JAAA6DJuweokubm5MXfu3Jg2bVoMHDgwNm7cGA899FAU\nFhZGdXV1jBgxoqtHBACA5ARIJykqKoqioqKmX1922WUxffr0mDJlStx///2xfPnyLpwOAAC6hgBJ\n6KKLLopJkybFunXr2jxuwYIFMXjw4GZrpaWlUVpa2pnjAQDwf6xatSpWrVrVbG3Pnj1dNM2pQ4Ak\nNmLEiKipqWnzmCVLlvjkLACALna0vwCurq6OCRMmdNFEpwZvQk/s3XffjWHDhnX1GAAA0CUEyEmw\nffv22Lx5cxw8eLBpbdeuXS2OW7t2bVRXV8eMGTNSjgcAAN2GW7COYdmyZbFnz57Ytm1bRET85Cc/\nia1bt0ZExPz582PgwIFxxx13REVFRdTW1sbIkSMjIqKwsDAKCgpiwoQJMWjQoKiuro7HHnssRo4c\nGXfddVeXPR8AAOhKAuQYvv/978f7778fERGZTCaefvrpWLNmTWQymfjmN78ZAwcOjEwmE5lMptl5\nV199dTz33HPxwgsvRH19feTn58cNN9wQixcvdgsWAAC9lgA5hvfee++Yx5SXl0d5eXmztbKysigr\nK+ussQAAoEfyHhAAACAZAQIAACQjQAAAgGQECAAAkIwAAQAAkhEgAABAMgIEAABIRoAAAADJCBAA\nACAZAQIAACQjQAAAgGQECAAAkIwAAQAAkhEgAABAMgIEAABIRoAAAADJCBAAACAZAQIAACQjQAAA\ngGQECAAAkIwAAQAAkhEgAABAMgIEAABIRoAAAADJCBAAACAZAQIAACQjQAAAgGQECAAAkIwAAQAA\nkhEgAABAMgIEAABIRoAAAADJCBAAACAZAQIAACQjQAAAgGQECAAAkIwAAQAAkhEgAABAMgIEAABI\nRoAAAADJCBAAACAZAQIAACQjQAAAgGQECAAAkIwAAQAAkhEgAABAMgKkDX/6059i8eLFMWPGjPjs\nZz8bOTk5sXLlynafv2fPnpg3b14MGzYsBgwYEJdcckls2rSpEycGAIDuTYC0YdeuXVFWVhZvv/12\njB8/PiIiMplMu849dOhQzJo1K1atWhXz58+PBx98MHbu3BlTp06NLVu2dObYAADQbfXp6gG6s/z8\n/Ni+fXucddZZ8cYbb8TEiRPbfW5VVVWsX78+qqqq4oorroiIiOLi4hg7dmwsXrw4KisrO2tsAADo\ntrwC0oYzzjgjzjrrrIiIyGazHTq3qqoqhg8f3hQfERFDhw6N4uLieOaZZ+LAgQMndVYAAOgJBEgn\n2bRpUxQUFLRYnzhxYtTX10dNTU0XTAUAAF1LgHSSurq6yMvLa7F+ZG3btm2pRwIAgC7nPSCdpKGh\nIfr27dtivV+/fhERsW/fvtQjAcAp79VXX+3qETjFvffee109Qo8nQDpJ//79Y//+/S3WGxoamr7f\nmgULFsTgwYObrZWWlkZpaenJHRIAThlbIyJi+fLlsXz58i6eBWiLAOkkeXl5R73Nqq6uLiIOf8JW\na5YsWXLU948AAK350//+75MR8YWuHIRT3tqIuKerh+jRBEgnGT9+fLzyyiuRzWab/eyQDRs2RG5u\nbowdO7YLpwOAU9UXIsJf4tGZft/VA/R43oR+Emzfvj02b94cBw8ebFq76qqrYseOHbFmzZqmtd27\nd8fq1atj9uzZcfrpp3fFqAAA0KW8AnIMy5Ytiz179jTdTvWTn/wktm49fJ/p/PnzY+DAgXHHHXdE\nRUVF1NbWxsiRIyPicIBMnjw55s6dG2+99VYMGTIkHnnkkchms3Hfffd12fMBAICuJECO4fvf/368\n//77ERGRyWTi6aefjjVr1kQmk4lvfvObMXDgwMhkMs1us4qIyMnJibVr18bChQtj6dKlsW/fvrjw\nwgujoqIixowZ0xVPBQAAupwAOYb2fNRaeXl5lJeXt1gfPHhwrFixIlasWNEZowEAQI/jPSAAAEAy\nAgQAAEhGgAAAAMkIEAAAIBkBAgAAJCNAAACAZAQIAACQjAABAACSESAAAEAyAgQAAEhGgAAAAMkI\nEAAAIBkBAgAAJCNAAACAZAQIAACQjAABAACSESAAAEAyAgQAAEhGgAAAAMkIEAAAIBkBAgAAJCNA\nAACAZAQIAACQjAABAACSESAAAEAyAgQAAEhGgAAAAMkIEAAAIBkBAgAAJCNAAACAZAQIAACQjAAB\nAACSESAAAEAyAgQAAEhGgAAAAMkIEAAAIBkBAgAAJCNAAACAZAQIAACQjAABAACSESAAAEAyAgQA\nAEhGgAAAAMkIEAAAIBkBAgAAJCNAAACAZATIMezfvz9uv/32yM/Pj8985jMxefLkWLdu3THPe/zx\nxyMnJ+fWB9rXAAASp0lEQVSoXzt37kwwOQAAdD99unqA7u66666Lp556Km655ZYYM2ZMlJeXx6WX\nXhovvfRSXHTRRcc8v6ysLEaNGtVsbdCgQZ01LgAAdGsCpA2//OUv40c/+lH8v//3/+LWW2+NiIhr\nrrkmvvSlL8WiRYvi1VdfPeZjzJw5MwoKCjp7VAAA6BHcgtWGqqqq6NOnT8ybN69prW/fvnH99dfH\n+vXr48MPPzzmY2Sz2di7d280NjZ25qgAANAjCJA2bNq0KcaOHRsDBgxotj5x4sSIiPjVr351zMeY\nNm1aDBo0KHJzc+Pyyy+PLVu2dMqsAADQE7gFqw11dXWRl5fXYv3I2rZt21o9Nzc3N+bOnRvTpk2L\ngQMHxsaNG+Ohhx6KwsLCqK6ujhEjRnTa3AAA0F0JkDbs27cv+vbt22K9X79+Td9vTVFRURQVFTX9\n+rLLLovp06fHlClT4v7774/ly5ef/IEBAKCbEyBt6N+/f+zfv7/FekNDQ9P3O+Kiiy6KSZMmHfNj\nfBcsWBCDBw9utlZaWhqlpaUd+vcBAHAiVv3v1//1QVcMckoRIG3Iy8s76m1WdXV1ERGRn5/f4ccc\nMWJE1NTUtHnMkiVLfHIWAECXK/3fr/+rMiLmdMEspw5vQm/DBRdcEDU1NbF3795m6xs2bIiIiPHj\nx3f4Md99990YNmzYSZkPAAB6GgHShquuuioaGxvj0UcfbVrbv39/lJeXx+TJk+Pss8+OiIjt27fH\n5s2b4+DBg03H7dq1q8XjrV27Nqqrq2PGjBmdPzwAAHRDbsFqw4UXXhhFRUVx5513xs6dO+Pcc8+N\nlStXxtatW6O8vLzpuDvuuCMqKiqitrY2Ro4cGRERhYWFUVBQEBMmTIhBgwZFdXV1PPbYYzFy5Mi4\n6667uuopAQBAlxIgx1BRURH33HNPPPHEE/Hxxx/HV77ylfjpT38aF198cdMxmUwmMplMs/Ouvvrq\neO655+KFF16I+vr6yM/PjxtuuCEWL17sFiwAAHotAXIMffv2jQcffDAefPDBVo8pLy9v9opIRERZ\nWVmUlZV19ngAANCjeA8IAACQjAABAACSESAAAEAyAgQAAEhGgAAAAMkIEAAAIBkBAgAAJCNAAACA\nZAQIAACQjAABAACSESAAAEAyAgQAAEhGgAAAAMkIEAAAIBkBAgAAJCNAAACAZAQIAACQjAABAACS\nESAAAEAyAgQAAEhGgAAAAMkIEAAAIBkBAgAAJCNAAACAZAQIAACQjAABAACSESAAAEAyAgQAAEhG\ngAAAAMkIEAAAIBkBAgAAJCNAAACAZAQIAACQjAABAACSESAAAEAyAgQAAEhGgAAAAMkIEAAAIBkB\nAgAAJCNAAACAZAQIAACQjAABAACSESAAAEAyAgQAAEhGgAAAAMkIEAAAIBkB0ob9+/fH7bffHvn5\n+fGZz3wmJk+eHOvWrWvXuXv27Il58+bFsGHDYsCAAXHJJZfEpk2bOnliAADo3gRIG6677rp4+OGH\n45prromlS5fGaaedFpdeemm8+uqrbZ536NChmDVrVqxatSrmz58fDz74YOzcuTOmTp0aW7ZsSTR9\n77Jq1aquHoFew14jFXuNVOw10hIgrfjlL38ZP/rRj+J73/tePPDAA/Gtb30rfv7zn8c555wTixYt\navPcqqqqWL9+faxcuTLuueee+Jd/+Zd4+eWX47TTTovFixcnega9iwAhHXuNVOw1UrHXSEuAtKKq\nqir69OkT8+bNa1rr27dvXH/99bF+/fr48MMP2zx3+PDhccUVVzStDR06NIqLi+OZZ56JAwcOdOrs\nAADQXQmQVmzatCnGjh0bAwYMaLY+ceLEiIj41a9+1ea5BQUFLdYnTpwY9fX1UVNTc3KHBQCAHkKA\ntKKuri7y8vJarB9Z27ZtW6ecCwAAp7I+XT1Ad7Vv377o27dvi/V+/fo1fb81DQ0Nx3VuQ0NDRET8\n+7//e+Tn53d45t6spqYmvvvd73b1GD3Gr3/96//9p7UR8fuuHKUH+iAiKrt6iB7kyId22GsdZ691\njL12/Oy1jjm819r6syBtEyCt6N+/f+zfv7/F+pFI6N+//0k/97333ouIiOXLl3d4XiLuueeerh6h\nB3LNjs+crh6gB7LXjo+91nH22vGx1zqqtrY2Lrrooq4eo0cSIK3Iy8s76q1SdXV1ERFtvkJxvOdO\nnz49nnzyyfjc5z7XZuAAANA1Ghoa4r333ovp06d39Sg9lgBpxQUXXBAvv/xy7N27N/7mb/6maX3D\nhg0RETF+/PhWzx0/fny88sorkc1mI5PJNDs3Nzc3xo4de9Tzhg4dGt/4xjdO0jMAAKAzFBYWdvUI\nPZo3obfiqquuisbGxnj00Ueb1vbv3x/l5eUxefLkOPvssyMiYvv27bF58+Y4ePBgs3N37NgRa9as\naVrbvXt3rF69OmbPnh2nn356uicCAADdSCabzWa7eojuqqSkJJ5++um45ZZb4txzz42VK1fGxo0b\n42c/+1lcfPHFEXH4p6VXVFREbW1tjBw5MiIO/yT0iy++OH7729/GwoULY8iQIfHII4/EBx98EK+/\n/nqMGTOmK58WAAB0GbdgtaGioiLuueeeeOKJJ+Ljjz+Or3zlK/HTn/60KT4iIjKZTLPbrCIicnJy\nYu3atbFw4cJYunRp7Nu3Ly688MKoqKgQHwAA9GpuwWpD375948EHH4xt27bFvn374rXXXouvf/3r\nzY4pLy+PxsbGplc/jhg8eHCsWLEidu3aFR999FFMnDgx/vEf/zE+85nPxOTJk2PdunXtmmHPnj0x\nb968GDZsWAwYMCAuueSS2LRp00l7jt3Z/v374/bbb4/8/PwOXbfHH388cnJyjvq1c+fOBJN3jT/9\n6U+xePHimDFjRnz2s5+NnJycWLlyZbvP76177USuW2/da6+//nrcdNNNMW7cuBgwYECcc845UVJS\nEu+88067zu+te+1Erltv3Wu/+93voqioKM4999zIzc2NIUOGRGFhYVRWtu8jY3vrXjuR69Zb99rR\n3H///ZGTkxPnn39+u47vrfvteHgFJIHrrrsunnrqqbjllltizJgxUV5eHpdeemm89NJLbX5826FD\nh2LWrFnx5ptvxqJFi5pu5Zo6dWq88cYbMXr06ITPIr3jvW5HlJWVxahRo5qtDRo0qLPG7XK7du2K\nsrKyOOecc2L8+PHx8ssvt3h1rjW9ea+dyHU7orfttQceeCDWr18fRUVF8eUvfznq6upi2bJlUVBQ\nEK+99lqMGzeu1XN78147ket2RG/ba1u3bo1PP/00rrvuusjPz4/6+vqoqqqKa665Jmpra+M73/lO\nq+f25r12ItftiN621/7aBx98EP/6r/8aubm57fr/hN68345Llk61YcOGbCaTyX7/+99vWmtoaMiO\nHj06W1hY2Oa5P/rRj7KZTCb71FNPNa3t2rUre+aZZ2b/+Z//udNm7g5O5LqVl5dnM5lM9o033ujs\nMbuV/fv3Z3fs2JHNZrPZjRs3ZjOZTHblypXtOrc377UTuW69da/993//d/bAgQPN1t55551sv379\nsnPmzGnz3N68107kuvXWvXY0jY2N2fHjx2dHjhzZ5nG9ea8dTXuvm712WElJSfbv//7vs1OnTs1+\n6UtfOubx9lvHuAWrk1VVVUWfPn1i3rx5TWt9+/aN66+/PtavXx8ffvhhm+cOHz48rrjiiqa1oUOH\nRnFxcTzzzDNx4MCBTp29K53IdTsim83G3r17o7GxsTNH7TbOOOOMOOussyLi8HPviN68107kuh3R\n2/baV7/61ejTp/kL6KNHj44vfvGLsXnz5jbP7c177USu2xG9ba8dTU5OTowYMeKYnyjZm/fa0bT3\nuh3Rm/faL37xi3jqqadiyZIlLX6kQmvst44RIJ1s06ZNMXbs2BgwYECz9YkTJ0ZExK9+9as2zy0o\nKGixPnHixKivr4+ampqTO2w3ciLX7Yhp06bFoEGDIjc3Ny6//PLYsmVLp8x6KujNe+1ksNcO/2Fl\nx44dMXTo0DaPs9eaa+91O6K37rX6+vrYvXt3/OEPf4iHH344nn/++Vi0aFGb59hrx3fdjuite62x\nsTFuvvnm+Pa3v92u2yKPsN86xntAOlldXV3k5eW1WD+ydrSfmP5/z506dWqb53bkP46e5ESuW25u\nbsydOzemTZsWAwcOjI0bN8ZDDz0UhYWFUV1dHSNGjOi0uXuq3rzXToS99heVlZWxbdu2+O53v9vm\ncfZac+29br19r916661NP5erT58+sXTp0mavkB+NvXZ8162377Uf/OAHsXXr1vj5z3/eofPst44R\nIJ1s37590bdv3xbr/fr1a/p+axoaGo773J7uRK5bUVFRFBUVNf36sssui+nTp8eUKVPi/vvvj+XL\nl5/8gXu43rzXToS9dtjmzZvjxhtvjMLCwrj22mvbPNZe+4uOXLfevtduueWWKC4ujm3btkVlZWXc\ndNNN0b9//zavm712fNetN++1jz76KO6999649957Y8iQIR06137rGAHSyfr37x/79+9vsd7Q0ND0\n/c44t6c72c/9oosuikmTJrX74497m96810623rbXtm/fHrNmzYozzzwzqqqqjnmvtL12WEev29H0\npr123nnnxXnnnRcREXPmzInp06fHggULori4uNU9Y68d33U7mt6y1+6+++4YOnRo3HzzzR0+137r\nGO8B6WR5eXlHvV2orq4uIiLy8/M75dyerjOe+4gRI+Ljjz8+4dlORb15r3WG3rLXPvnkk5g5c2b8\n8Y9/jP/6r/+K4cOHH/Mce+34rltreste+2tXXnllfPLJJ/H222+3eoy91lJ7rltrTvW99s4778SK\nFSvi5ptvjg8++CBqa2ujtrY2Ghoa4s9//nO8//77bT5/+61jBEgnu+CCC6Kmpib27t3bbH3Dhg0R\nETF+/PhWzx0/fnxUV1e3+GSeDRs2RG5ubowdO/bkD9xNnMh1a827774bw4YNOynznWp6817rDL1h\nrzU0NMTs2bNjy5Yt8dOf/jQ+//nPt+u83r7Xjve6taY37LWjOXI7S05O63+M6e177Wjac91ac6rv\ntQ8//DAOHToU8+fPj7/9279t+vrlL38ZNTU1MWrUqCgrK2v1fPutYwRIJ7vqqquisbGx6U1gEYd/\nwnd5eXlMnjw5zj777Ig4/HL85s2b4+DBg83O3bFjR6xZs6Zpbffu3bF69eqYPXt2uz9Kryc6keu2\na9euFo+3du3aqK6ujhkzZnT+8N2cvXZ87LW/aGxsjJKSktiwYUOsXr06Jk2adNTj7LXmTuS69da9\ndrTnfeDAgaioqIghQ4Y0vam3rq7OXvs/TuS69da9dv7558fTTz8dP/7xj5u+nn766Rg3blycc845\n8eMf/ziuv/76iLDfToZM9ng/+J52KykpiaeffjpuueWWOPfcc2PlypWxcePG+NnPfhYXX3xxRBz+\nqd8VFRVRW1sbI0eOjIjDP1Xz4osvjt/+9rexcOHCpp+q+cEHH8Trr78eY8aM6cqn1emO97qNGTMm\nCgoKYsKECTFo0KCorq6Oxx57LM4+++x4/fXXT+m/wVm2bFns2bMntm3bFj/4wQ/iiiuuaHq1aP78\n+TFw4EB77SiO97r11r22YMGCWLp0acyePbvZm1WPmDNnTkT4fe2vnch166177Z/+6Z9i7969MWXK\nlMjPz4/t27dHZWVl1NTURHl5eXzzm9+MCHvtr53Ideute601U6dOjY8++ih+85vfNK3ZbydB+p99\n2Ps0NDRkFy5cmM3Ly8v269cvO2nSpOwLL7zQ7Jjrrrsum5OTk33//febrX/88cfZb33rW9mhQ4dm\nc3Nzs9OmTes1P530eK/b3Xffnb3ggguygwcPzp5xxhnZz33uc9kbb7wxu3PnztRPIbnPfe5z2Uwm\nk81kMtmcnJxsTk5O0z8fuUb2WkvHe916616bOnVq0zX666+cnJym4+y15k7kuvXWvfYf//Ef2a9/\n/evZ4cOHZ08//fTskCFDspdeeml23bp1zY6z15o7kevWW/daa6ZOnZo9//zzm63ZbyfOKyAAAEAy\n3gMCAAAkI0AAAIBkBAgAAJCMAAEAAJIRIAAAQDICBAAASEaAAAAAyQgQAAAgGQECAAAkI0AAAIBk\nBAgAAJCMAAEAAJIRIAAAQDICBAAASEaAAAAAyQgQAAAgGQECAAAkI0AAAIBkBAgAAJCMAAEAAJIR\nIAAAQDICBAAASEaAAAAAyQgQAAAgGQECAAAkI0AAAIBkBAgAAJCMAAEAAJIRIAAAQDICBAAASEaA\nAAAAyQgQAAAgGQECAAAkI0AAAIBkBAgAAJCMAAEAAJIRIAAAQDICBAAASEaAAAAAyQgQAAAgmf8P\npDpIO5V4wm8AAAAASUVORK5CYII=\n",
"prompt_number": 5,
- "text": "<IPython.core.display.Image at 0x5a46130>"
+ "text": [
+ "<IPython.core.display.Image at 0x5a46130>"
+ ]
}
],
"prompt_number": 5