diff options
Diffstat (limited to 'Power_Plant_Engineering_by_P._K._Nag/Ch5.ipynb')
-rw-r--r-- | Power_Plant_Engineering_by_P._K._Nag/Ch5.ipynb | 290 |
1 files changed, 290 insertions, 0 deletions
diff --git a/Power_Plant_Engineering_by_P._K._Nag/Ch5.ipynb b/Power_Plant_Engineering_by_P._K._Nag/Ch5.ipynb new file mode 100644 index 00000000..9eb71916 --- /dev/null +++ b/Power_Plant_Engineering_by_P._K._Nag/Ch5.ipynb @@ -0,0 +1,290 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 5 : Combustion Mechanism, Combustion Equipment And Firing Methods" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 5.1 Page 308" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " The total surface area of the particles in the bed As = 8423 m**2 \n" + ] + } + ], + "source": [ + "#Input data\n", + "Vs=2500##The mass of a bed of solid particles in kg\n", + "p=2650##The density of the solid in kg/m**3\n", + "d=800*10**-6##The mean particle size in m\n", + "s=0.84##The sphericity of the particle\n", + "\n", + "#Calculations\n", + "As=(6*Vs)/(p*d*s)##The total surface area of the particles in the bed\n", + "\n", + "#Output\n", + "print \" The total surface area of the particles in the bed As = %3.0f m**2 \"%(As)\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 5.2 Page 309" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " (a) The voidage of the bed = 0.417 \n", + " (b) The minimum fluidization velocity Umf = 0.187 m/s \n" + ] + } + ], + "source": [ + "#Input data\n", + "d=427*10**-6##The mean particle size in m\n", + "pg=1.21##The density of air in kg/m**3\n", + "v=1.82*10**-5##The viscosity of air in kg/ms\n", + "pl=1620##The density of the loosely packed bed in kg/m**3\n", + "ps=2780##The density of the solids in kg/m**3\n", + "c1=27.2##(Grace,1982)constant value.\n", + "c2=0.0408##(Grace,1982)constant value\n", + "g=9.812##Gravitational forc constant in m/s**2\n", + "\n", + "#Calculations\n", + "E=1-(pl/ps)##The voidage of the bed\n", + "Ar=((pg)*(ps-pg)*g*(d**3))/v**2##Archimedes number\n", + "Re=(c1**2+(c2*Ar))**(0.5)-c1##Reynolds number\n", + "Umf=Re*v/(pg*d)##Minimum superficial velocity in m/s\n", + "\n", + "#Output\n", + "print \" (a) The voidage of the bed = %3.3f \\n (b) The minimum fluidization velocity Umf = %3.3f m/s \"%(E,Umf)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 5.3 Page 309" + ] + }, + { + "cell_type": "code", + "execution_count": 25, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The sphericity of particles is = 0.811 \n" + ] + } + ], + "source": [ + "from scipy.optimize import fsolve\n", + "#Input data\n", + "d=427*10**-6##The mean particle size in m\n", + "pg=1.21##The density of air in kg/m**3\n", + "v=1.82*10**-5##The viscosity of air in kg/ms\n", + "Umf=0.14##Minimum superficial velocity in m/s\n", + "Ar=7753##Archimedes number from previous example problem\n", + "\n", + "#Calculations\n", + "\n", + "Re=(Umf*pg*d)/v##Reynolds number\n", + "def F(x):##function definition\n", + " f = 7753*x**2- 381.1*x -4793#\n", + " return f\n", + "x = 100##Initial guss\n", + "y = fsolve(F,x)#\n", + "\n", + "#Output\n", + "print \"The sphericity of particles is = %3.3f \"%(y)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 5.4 Page 310" + ] + }, + { + "cell_type": "code", + "execution_count": 26, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The required flow rate of limestone is 2405.3 kg/h \n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "#Input data\n", + "O=35##The output of the fluidized bed combustion system in MW\n", + "n=0.80##Efficiency of the fluidized bed combustion system \n", + "H=26##The heating value of coal in MJ/kg\n", + "S=3.6##Sulphur content in the coal in %\n", + "C=3##The calcium sulphur ratio \n", + "Ca=85##The amount of calcium carbonate in the limestone in %\n", + "CaCO3=100##The molecular weight of CaCO3\n", + "\n", + "#Calculations\n", + "Cb=O/(n*H)##Coal burning rate in kg/s\n", + "Cb1=Cb*3600##Coal burning rate in kg/h\n", + "Sf=(Cb1*(S/100))/32##Flow rate of sulphur in Kmol/h\n", + "Cf=Sf*C##The flow rate of calcium in Kmol/h\n", + "Caf=Cf*CaCO3##Mass flow rate of CaCO3 in kg/h\n", + "L=Caf/(Ca/100)##Mass flow rate of limestone in kg/h\n", + "\n", + "#Output\n", + "print \"The required flow rate of limestone is %3.1f kg/h \"%(L)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 5.5 Page 310" + ] + }, + { + "cell_type": "code", + "execution_count": 27, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " (a) The rate of heat removal from the bed = 6405 kW \n", + " (b) The rate of heat removal from the above bed zone = 16333 kW \n" + ] + } + ], + "source": [ + "#Input data\n", + "CV=24##The calorific value of the fuel in MJ/kg\n", + "C=0.65##The amount of calorific value released in the bed in %\n", + "to=850##Temperature at which products leave in degree centigrade\n", + "ti=30##The inlet temperature in degree centigrade\n", + "tb=850##The bed temperature in degree centigrade\n", + "A=14.5##The air fuel ratio by mass\n", + "Cp=1.035##The specific heat of the products leaving the bed surface in kJ/kgK\n", + "B=7000##The burning rate of coal in kg/h\n", + "\n", + "#Calculations\n", + "H=(C*CV*1000)-(A*Cp*(to-ti))##Heat removal from the bed per kg fuel in kJ/kg fuel\n", + "Hr=(H*B)/3600##Rate of heat removal from the bed in kW\n", + "Hb=(B/3600)*(1-C)*CV*1000##The rate of heat removal from the above bed zone in kW\n", + "\n", + "#Output\n", + "print \" (a) The rate of heat removal from the bed = %3.0f kW \\n (b) The rate of heat removal from the above bed zone = %3.0f kW \"%(Hr,Hb)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex 5.6 Page 311" + ] + }, + { + "cell_type": "code", + "execution_count": 28, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " (a) The planform area = 2.4 m**2 \n", + " (b) Fuel burning rate = 0.192 kg/s \n", + " Air flow rate = 2.1888 kg/s \n", + " Planform area = 2.58 m**2 \n" + ] + } + ], + "source": [ + "#Input data\n", + "tb=850##The bed temperature in degree centigrade\n", + "CV=25##The calorific value of the fuel in MJ/kg\n", + "A=9.5##The stoichiometric air fuel ratio by mass\n", + "E=20##The amount of excess air used in %\n", + "F=4.8##The total fueling rate in MW\n", + "p=0.3145##The density of air at bed temperature in kg/m**3\n", + "f=2##The firing rate in MW/m**2\n", + "v=2.7##The fluidizing velocity in m/s\n", + "\n", + "#Calculations\n", + "P=F/f##Planform area in m**2\n", + "m=(F*1000)/(CV*1000)##Fuel burning rate in kg/s\n", + "ma=A*(1+(E/100))*m##Mass flow rate of air in kg/s\n", + "Pa=ma/(p*v)##Planform area in m**2\n", + "\n", + "#Output\n", + "print \" (a) The planform area = %3.1f m**2 \\n (b) Fuel burning rate = %3.3f kg/s \\n Air flow rate = %3.4f kg/s \\n Planform area = %3.2f m**2 \"%(P,m,ma,Pa)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |