diff options
Diffstat (limited to 'Power_Plant_Engineering_by_P._K._Nag/Ch11.ipynb')
-rw-r--r-- | Power_Plant_Engineering_by_P._K._Nag/Ch11.ipynb | 529 |
1 files changed, 529 insertions, 0 deletions
diff --git a/Power_Plant_Engineering_by_P._K._Nag/Ch11.ipynb b/Power_Plant_Engineering_by_P._K._Nag/Ch11.ipynb new file mode 100644 index 00000000..84b289a0 --- /dev/null +++ b/Power_Plant_Engineering_by_P._K._Nag/Ch11.ipynb @@ -0,0 +1,529 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter 11 : Diesel engine and Gas Turbine Power Plants" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex: 11.1 Pg: 766" + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Net increase in brake power is 28.67 kW\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "#Input data\n", + "C=3.5#Capacity in litres\n", + "P=13.1#Indicated power in kW/m**3\n", + "N=3600#Speed in rpm\n", + "ve=82#Volumetric efficiency in percent\n", + "p1=1.013#Pressure in bar\n", + "T1=25+273#Temperature in K\n", + "rp=1.75#Pressure ratio\n", + "ie=70#Isentropic efficiency in percent\n", + "me=80#Mechanical efficiency in percent\n", + "g=1.4#Ratio of specific heats\n", + "R=0.287#Gas constant in kJ/kg.K\n", + "Cp=1.005#Specific heat in kJ/kg.K\n", + "\n", + "#Calculations\n", + "EC=(C/1000)#Engine capacity in m**3\n", + "Vs=(N/2)*EC#Swept volume in m**3\n", + "Vui=(ve/100)*Vs#Unsupercharged induced volume in m**3/min\n", + "dp=(rp*p1)#Blower delivery pressure in bar\n", + "T2sT1=(rp)**((g-1)/g)#Ratio of temperatures\n", + "T2s=(T2sT1*T1)#Temperature in K\n", + "dT21=(T2s-T1)/(ie/100)#Difference in temperature in K\n", + "T2=dT21+T1#Temperature in K\n", + "EV=(Vs*dp*T1)/(p1*T2)#Equivalent volume in m**3/min\n", + "iiv=EV-Vui#Increase in induced volume in m**3/min\n", + "iip=(P*iiv)#Increase in indicated power in kW\n", + "iipi=((dp-p1)*100*Vs)/60#Increase in induced power due to increase in induction pressure in kW\n", + "tiip=iip+iipi#Total increase in indicated power in kW\n", + "tibp=tiip*(me/100)#Total increase in brake power in kW\n", + "ma=(dp*100*Vs)/(60*R*T2)#Mass of air in kg/s\n", + "WI=(ma*Cp*(T2-T1))#Work input to heater in kW\n", + "Pb=(WI/(me/100))#Power required in kW\n", + "NI=tibp-Pb#Net increase in brake power in kW\n", + "\n", + "#Output\n", + "print \"Net increase in brake power is %3.2f kW\"%(NI)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex: 11.2 Pg: 768" + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " (a) the temperature of air leaving the compressor is 129.76 degree C \n", + " (b) the temperature of gases leaving the turbine is 482.26 degree C \n", + " (c) the mechanical power loss in the turbocharger as a percentage of the power generated in the turbine is 15.08 percent\n" + ] + } + ], + "source": [ + "#Input data\n", + "p1=0.97#Pressure in bar\n", + "t1=30+273#Temperature in K\n", + "p2=2.1#Pressure in bar\n", + "af=18#Air fuel ratio\n", + "t3=580+273#Temperature in K\n", + "p3=1.9#Pressure in bar\n", + "p4=1.06#Pressure in bar\n", + "iec=0.75#Isentropic efficiency of compressor\n", + "iet=0.85#Isentropic efficiency of turbine\n", + "cpa=1.01#Specific heat for air in kJ/kg.K\n", + "ga=1.4#Ratio of specific heats\n", + "cpex=1.15#Specific heat in kJ/kg.K\n", + "gex=1.33#Ratio of specific heats\n", + "\n", + "#Calculations\n", + "t2s=t1*(p2/p1)**((ga-1)/ga)#Tempeature in K\n", + "t21=(t2s-t1)/iec#Temperature in K\n", + "t2=t21+t1#Temperature in K\n", + "T2=t2-273#Temperature in degree C\n", + "t3t4s=(p3/p4)**((gex-1)/gex)#Ratio of temperatures\n", + "t4s=(t3/t3t4s)#Temperature in K\n", + "t4=t3-((t3-t4s)*iet)#Temperature in K\n", + "T4=t4-273#Temperature in degree C\n", + "mp=(((cpex*(1+(1/af))*(t3-t4))-(cpa*(t2-t1)))/(cpex*(1+(1/af))*(t3-t4)))*100#Percentage of mechanical power loss\n", + "\n", + "#Output\n", + "print \" (a) the temperature of air leaving the compressor is %3.2f degree C \\n (b) the temperature of gases leaving the turbine is %3.2f degree C \\n (c) the mechanical power loss in the turbocharger as a percentage of the power generated in the turbine is %3.2f percent\"%(T2,T4,mp)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex: 11.3 Pg: 770" + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " ENERGY BALANCE SHEET \n", + " (in kW) (in percent)\n", + " 1. Brake power 53.12 37.69 \n", + " 2. Heat carried away by exhaust gases 29.09 20.64 \n", + " 3. Heat lost to jacket cooling water 45.10 32.00 \n", + " 4. Heat loss unaccounted 13.64 9.67 \n", + " Total 140.94 100.00\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "#Input data\n", + "a=215#Current in A\n", + "v=210#Voltage in V\n", + "e=85#Efficiency in percent\n", + "q=11.8#Quantity of fuel supplied in kg/h\n", + "cv=43#Calorific value in MJ/kg\n", + "af=18#Air fuel ratio\n", + "w=560#Water in litres/h\n", + "tw=38#Temeparature in degree C\n", + "te=97#Temeparature in degree C\n", + "cp=1.04#Specific heat in kJ/kg.K\n", + "ta=30#Temeparature in degree C\n", + "l=32#Percentage lost \n", + "sw=4.187#Specific heat in kJ/kg.K\n", + "\n", + "#Calculations\n", + "P=(a*v)/1000#Power in kW\n", + "BP=(P/(e/100))#Brake power in kW\n", + "E=(q/3600)*cv*1000#Energy supplied in kW\n", + "mg=(q/3600)*(1+af)#Rate of gases in kg/s\n", + "he=(mg*cp*(te-ta))+((w/3600)*sw*tw)#Heat carried away by exhaust gases in kW\n", + "hj=(l/100)*E#Heat lost to jacket cooling water in kW\n", + "pBP=(BP/E)*100#Percentage\n", + "pE=(E/E)*100#Percentage\n", + "phe=(he/E)*100#Percenatge\n", + "phj=(hj/E)*100#Percenatge \n", + "\n", + "#Output\n", + "print \" ENERGY BALANCE SHEET \\n (in kW) (in percent)\\n 1. Brake power %3.2f %3.2f \\n 2. Heat carried away by exhaust gases %3.2f %3.2f \\n 3. Heat lost to jacket cooling water %3.2f %3.2f \\n 4. Heat loss unaccounted %3.2f %3.2f \\n Total %3.2f %3.2f\"%(BP,pBP,he,phe,hj,phj,(E-(BP+he+hj)),(((E-(BP+he+hj))/E)*100),E,(pBP+phe+phj+(((E-(BP+he+hj))/E)*100)))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex: 11.4 Pg: 771" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " Indicated power is 18.07 kW \n", + " Brake power is 12.811 kW \n", + "\n", + " ENERGY BALANCE SHEET \n", + " (in kJ) (in percent)\n", + " 1. Energy equivalent in ip 21685 31.59 \n", + " 2. Energy carried away by cooling water 16748 24.40 \n", + " 3. Energy carried away by exhaust gases 18887 27.52 \n", + " 4. Unaccounted for energy loss 11320 16.49 \n", + " Total 68640 100.00\n" + ] + } + ], + "source": [ + "from __future__ import division\n", + "#Input data\n", + "t=20#Trial time in minutes\n", + "NL=680#Net brake load in N\n", + "mep=3#Mean effective pressure in bar\n", + "N=360#Speed in rpm\n", + "Fc=1.56#Fuel consumption in kg\n", + "cw=160#Cooling water in kg\n", + "Tw=32#Temperature of water at inlet in degree C\n", + "Wo=57#Water outlet temperature in degree C\n", + "a=30#Air in kg\n", + "Ta=27#Room temperature in degree C\n", + "Te=310#Exhaust gas temperature in degree C\n", + "d=210#Bore in mm\n", + "l=290#Stroke in mm\n", + "bd=1#Brake diameter in m\n", + "cv=44#Calorific value in MJ/kg\n", + "st=1.3#Steam formed in kg per kg fuel in the exhaust\n", + "cp=2.093#Specific heat of steam in exhaust in kJ/kg.K\n", + "cpx=1.01#Specific heat of dry exhaust gases in kJ/kg.K\n", + "cpw=4.187#Specific heat of water in kJ/kg.K\n", + "\n", + "#Calculations\n", + "ip=(mep*100*(l/1000)*(3.14/4)*(d/1000)**2*N)/60#Indicated Power in kW\n", + "bp=((2*3.14*N*(NL*(1/2)))/60)/1000#Brake power in kW\n", + "nm=(bp/ip)*100#Mechanical efficiency in percent\n", + "qs=(Fc*cv*10**3)#Heat supplied in kJ\n", + "qip=(ip*t*60)#Heat equivalent of ip in kJ\n", + "qcw=(cw*cpw*(Wo-Tw))#Heat carried away by cooling water in kJ\n", + "tm=(Fc*a)#Toatl mass of exhaust gas in kg\n", + "ms=(st*Fc)#Mass of steam formed in kg\n", + "mde=(tm-ms)#Mass of dry exhaust gas in kg\n", + "Ed=(mde*cpx*(Te-Ta))#Energy carried away by dry exhaust gases in kJ\n", + "Es=(ms*((cpw*(100-Ta))+2257.9+(cp*(Te-100))))#Energy carried away by steam in kJ\n", + "TE=(Ed+Es)#Total energy carried away by exhaust gases in kJ\n", + "ue=(qs-(qip+qcw+TE))#Unaccounted energy in kJ\n", + "pqip=(qip/qs)*100#Percentage\n", + "pqcw=(qcw/qs)*100#Percentage\n", + "pTE=(TE/qs)*100#Percentage\n", + "pue=(ue/qs)*100#Percentage\n", + "\n", + "#Output\n", + "print \" Indicated power is %3.2f kW \\n Brake power is %3.3f kW \\n\\n ENERGY BALANCE SHEET \\n (in kJ) (in percent)\\n 1. Energy equivalent in ip %3.0f %3.2f \\n 2. Energy carried away by cooling water %3.0f %3.2f \\n 3. Energy carried away by exhaust gases %3.0f %3.2f \\n 4. Unaccounted for energy loss %3.0f %3.2f \\n Total %3.0f %3.2f\"%(ip,bp,qip,pqip,qcw,pqcw,TE,pTE,ue,pue,qs,(pqip+pqcw+pTE+pue))" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex: 11.5 Pg: 796" + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " (a)The flow velocity is 393 m/s \n", + " (b) The blade angles at the tip are : \n", + " Fixed blades (root) are 57.28 degrees and 23.88 degrees \n", + " Moving blades (root) are 38.78 degrees and 50.10 degrees \n", + " Fixed blades (tip) are 47.38 degrees and 17.17 degrees \n", + " Moving blades (tip) are 0.45 degrees and 54.23 degrees \n", + " (c) The degree of reaction at : \n", + " the tip is 64 percent \n", + " the root is 26 percent\n" + ] + } + ], + "source": [ + "from math import tan,sin,atan,degrees,pi,cos,sqrt\n", + "#Input data\n", + "Vbm=360#Blade velocity in m/s\n", + "b1=20#Blade angle at inlet in degrees\n", + "a2=b1#Angle in degrees\n", + "b2=52#Blade angle at exit in degrees\n", + "a1=b2#Angle in degrees\n", + "R=50#Degree of reaction in percent\n", + "dm=0.45#Mean diameter of the blade in m\n", + "bh=0.08#Mean blade height in m\n", + "\n", + "#Calculations\n", + "Vf=(Vbm/(tan(pi/180*b2)-tan(pi/180*b1)))#Velocity in m/s\n", + "rt=(dm/2)+(bh/2)#Mean radius in m\n", + "Vbt=(Vbm*(rt/(dm/2)))#Velocity in m/s\n", + "Vw1m=Vf*tan(pi/180*a1)#Velocity in m/s\n", + "Vw1t=(Vw1m*((dm/2)/rt))#Velocity in m/s\n", + "dVw1=(Vf*(tan(pi/180*b1)+tan(pi/180*b2))*Vbm)/Vbt#Velocity in m/s\n", + "rr=(dm/2)-(bh/2)#Radius in m\n", + "Vbr=(Vbm*(rr/(dm/2)))#Velocity in m/s\n", + "Vw1r=(Vw1m*((dm/2)/rr))#Velocity in m/s\n", + "Vr2=Vf/cos(pi/180*b2)#Velocity in m/s\n", + "dVwr=((Vw1m+((Vr2*sin(pi/180*b2))-Vbm))*Vbm)/Vbr#Velocity in m/s\n", + "a1r=degrees(atan(Vw1r/Vf))#Angle in degrees\n", + "a2r=degrees(atan((dVwr-Vw1r)/Vf))#Angle in degrees\n", + "b1r=degrees(atan((Vw1r-Vbr)/Vf))#Angle in degrees\n", + "b2r=degrees(atan((Vbr+(Vf*tan(pi/180*a2r)))/Vf))#Angle in degrees\n", + "a1t=degrees(atan(Vw1t/Vf))#Angle in degrees\n", + "a2t=degrees(atan((dVw1-Vw1t)/Vf))#Angle in degrees\n", + "b1t=degrees(atan((Vw1t-Vbt)/Vf))#Angle in degrees\n", + "b2t=degrees(atan((Vbt+(Vf*tan(pi/180*a2t)))/Vf))#Angle in degrees\n", + "Rt=((Vf*(tan(pi/180*b2t)-tan(pi/180*b1t)))/(2*Vbt))*100#Degree of reaction at the tip in percent\n", + "Rr=((Vf*(tan(pi/180*b2r)-tan(pi/180*b1r)))/(2*Vbr))*100#Degree of reaction at the root in percent\n", + "\n", + "#Output\n", + "print \" (a)The flow velocity is %3.0f m/s \\n (b) The blade angles at the tip are : \\n Fixed blades (root) are %3.2f degrees and %3.2f degrees \\n Moving blades (root) are %3.2f degrees and %3.2f degrees \\n Fixed blades (tip) are %3.2f degrees and %3.2f degrees \\n Moving blades (tip) are %3.2f degrees and %3.2f degrees \\n (c) The degree of reaction at : \\n the tip is %3.0f percent \\n the root is %3.0f percent\"%(Vf,a1r,a2r,b1r,b2r,a1t,a2t,b1t,b2t,Rt,Rr)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex: 11.6 Pg: 799" + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Impeller tip diameter is 549 mm\n" + ] + } + ], + "source": [ + "from math import tan,sin,atan,degrees,pi,cos,sqrt\n", + "#Input data\n", + "N=16000#Speed in rpm\n", + "T1=17+273#Temperature in K\n", + "rp=4#Pressure ratio\n", + "In=82#Isentropic efficiency in percent\n", + "s=0.85#Slip factor\n", + "a=20#Angle in degrees\n", + "d=200#Diameter in mm\n", + "V=120#Velocity in m/s\n", + "cp=1.005#Specific heat in kJ/kg.K\n", + "g=1.4#Ratio of specific heats\n", + "\n", + "#Calculations\n", + "T2sT1=(rp)**((g-1)/g)#Temperature ratio\n", + "T2s=T1*T2sT1#Temeprature in K\n", + "dTs=(T2s-T1)#Temperature difference in K\n", + "dT=dTs/(In/100)#Temperature difference in K\n", + "Wc=(cp*dT)#Power input in kJ/kg\n", + "Vb1=(3.14*(d/1000)*N)/60#Velocity in m/s\n", + "Vw1=(V*sin(pi/180*a))#Pre-whirl velocity in m/s\n", + "Vb2=sqrt(((Wc*1000)+(Vb1*Vw1))/s)#Velocity in m/s\n", + "d2=((Vb2*60)/(3.14*N))*1000#Tip diameter in mm\n", + "\n", + "#Output\n", + "print \"Impeller tip diameter is %3.0f mm\"%(d2)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex: 11.7 Pg: 801" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Workdone factor of the compressor is 0.86\n" + ] + } + ], + "source": [ + "from math import tan,sin,atan,degrees,pi,cos,sqrt\n", + "#Input data\n", + "T1=25+273#Temperature in K\n", + "rp=6#Pressure ratio\n", + "Vb=220#Mean velocity in m/s\n", + "b1=45#Angle in degrees\n", + "a2=b1#Angle in degrees\n", + "b2=15#Angle in degrees\n", + "a1=b2#Angle in degrees\n", + "R=50#Degree of reaction in percent\n", + "n=10#Number of stages\n", + "In=83#Isentropic efficiency in percent\n", + "cp=1.005#Specific heat in kJ/kg.K\n", + "g=1.4#Ratio of specific heats\n", + "\n", + "#Calculations\n", + "V1=(Vb/(sin(pi/180*b2)+(cos(pi/180*a1)*tan(pi/180*a2))))#Velocity in m/s\n", + "V2=(V1*cos(pi/180*b2))/cos(pi/180*b1)#Velocity in m/s\n", + "dVw=(V2*sin(pi/180*a2))-(V1*sin(pi/180*a1))#Velocity in m/s.Textbook answer is wrong. Correct answer is 127 m/s\n", + "T2sT1=rp**((g-1)/g)#Temperature ratio\n", + "T2s=(T2sT1*T1)#Temperature in K\n", + "dTs=(T2s-T1)#Temperature difference in K\n", + "dT=(dTs/(In/100))#Temperature difference in K\n", + "W=(cp*dT)#Workdone in kJ/kg\n", + "w=(W*10**3)/(Vb*dVw*n)#Work done factor\n", + "\n", + "#Output\n", + "print \"Workdone factor of the compressor is %3.2f\"%(w)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex: 11.8 Pg: 802" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " (a) the air fuel ratio is 75.55 \n", + " (b) the cycle efficiency is 41.8 percent \n", + " (c) the power supplied by the plant is 41 MW \n", + " (d) the specific fuel consumption of the plant is 0.244 kg/kW.h and the fuel consumption per hour is 10007.26 kg\n" + ] + } + ], + "source": [ + "from math import sqrt,pi\n", + "#Input data\n", + "p1=1#Pressure in bar\n", + "T1=20+273#Temperature in K\n", + "Tm=900+273#Maximum temperature in K\n", + "rp=6#Pressure ratio\n", + "e=0.7#Effectiveness of regenerator\n", + "ma=210#Rate of air flow in kg/s\n", + "CV=40800#Calorific value in kJ/kg\n", + "ic=0.82#Isentropic efficiencies of both the compressors\n", + "it=0.92#Isentropic efficiencies of both the turbine\n", + "cn=0.95#Combustion efficiency \n", + "mn=0.96#Mechanical efficiency\n", + "gn=0.95#Generator efficiency\n", + "cp=1.005#Specific heat of air in kJ/kg.K\n", + "cpg=1.08#Specific heat of gas in kJ/kg.K\n", + "g1=1.4#Ratio of specific heats for air\n", + "g=1.33#Ratio of specific heats for gas\n", + "\n", + "#Calculations\n", + "pi=sqrt(p1*rp)#Intermediate pressure in bar\n", + "T2sT1=(pi/p1)**((g1-1)/g1)#Temperature ratio\n", + "T2s=(T2sT1*T1)#temperature in K\n", + "T2=((T2s-T1)/ic)+T1#Temperature in K\n", + "T4s=(T1*(rp/pi)**((g1-1)/g1))#Temperature in K\n", + "T4=((T4s-T1)/ic)+T1#Temperature in K\n", + "T7s=(Tm/(rp/p1)**((g-1)/g))#Temperature in K\n", + "T7=Tm-(it*(Tm-T7s))#Temperature in K\n", + "T5=(e*(T7-T4))+T4#Temperature in K\n", + "mf=1/((cp*(Tm-T5))/((CV*cn)-(cp*(Tm-T5))))#Air fuel ratio\n", + "Wgt=((1+(1/mf))*cpg*(Tm-T7))#Workdone by turbine in kJ/kg of air\n", + "Wc=(cp*((T2-T1)+(T4-T1)))#Workdone by compressor in kJ/kg of air\n", + "Wnet=(Wgt-Wc)#Net workdone in kJ/kg of air\n", + "Q=(CV*cn)/mf#Heat supplied in kJ/kg of air\n", + "ncy=(Wnet/Q)*100#Cycle efficiency in percent\n", + "PO=(Wnet*ma*mn*gn)/10**3#Power output in MW\n", + "Fc=(ma*3600*(1/mf))#Fuel consumption per hour in kg\n", + "SFC=(Fc/(PO*10**3))#Specific fuel consumption in kg/kW.h\n", + "\n", + "#Output\n", + "print \" (a) the air fuel ratio is %3.2f \\n (b) the cycle efficiency is %3.1f percent \\n (c) the power supplied by the plant is %3.0f MW \\n (d) the specific fuel consumption of the plant is %3.3f kg/kW.h and the fuel consumption per hour is %3.2f kg\"%(mf,ncy,PO,SFC,Fc)\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |