summaryrefslogtreecommitdiff
path: root/Physical_Chemistry_by_Duffey_George_H/Chapter_8.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Physical_Chemistry_by_Duffey_George_H/Chapter_8.ipynb')
-rwxr-xr-xPhysical_Chemistry_by_Duffey_George_H/Chapter_8.ipynb440
1 files changed, 440 insertions, 0 deletions
diff --git a/Physical_Chemistry_by_Duffey_George_H/Chapter_8.ipynb b/Physical_Chemistry_by_Duffey_George_H/Chapter_8.ipynb
new file mode 100755
index 00000000..c1054064
--- /dev/null
+++ b/Physical_Chemistry_by_Duffey_George_H/Chapter_8.ipynb
@@ -0,0 +1,440 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:e7ff5ec8c26bca61ce95f7f9a6bfe9182508039293520fdb892a47c60afd9608"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 8 - Quantum chemistry"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 1 - pg 460"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the Wavelength\n",
+ "#initialisation of variables\n",
+ "v= 299.8 #V\n",
+ "e= 4.802*10**-10 #ev\n",
+ "h= 6.624*10**-27 #ergs sec\n",
+ "c= 3*10**10 #cm/sec\n",
+ "#CALCULATIONS\n",
+ "E= e/v\n",
+ "l= h*c*10**8/(2*E)\n",
+ "#RESULTS\n",
+ "print '%s %.1f %s' % (' Wavelength =',l,'A')\n",
+ "print 'The answers are a bit different due to rounding off error in textbook'"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Wavelength = 6203.3 A\n",
+ "The answers are a bit different due to rounding off error in textbook\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 2 - pg 462"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the value of numerical coefficient\n",
+ "#initialisation of variables\n",
+ "u= 109677.583 #cm**-1\n",
+ "#RESULTS\n",
+ "print '%s %.1f %s' % (' value of numerical coefficient =',u,' cm')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " value of numerical coefficient = 109677.6 cm\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3 - pg 464"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the wavelength in both cases\n",
+ "#initialisation of variables\n",
+ "import math\n",
+ "h= 6.6234*10**-27 #ergs sec\n",
+ "m= 2.59 #gms\n",
+ "v= 3.35*10**4 #cm sec **-1\n",
+ "e= 4.8*10**-10 #ev\n",
+ "V= 40000. #volts\n",
+ "M= 300. #gms\n",
+ "L= 1836. #A\n",
+ "N= 6*10**23 #molecules\n",
+ "#CALCULATIONS\n",
+ "p= m*v\n",
+ "l= h/p\n",
+ "E= V*e/M\n",
+ "P= math.sqrt(2*E*(1/(L*N)))\n",
+ "L1= h*10**8/P\n",
+ "#RESULTS\n",
+ "print '%s %.2e %s' % (' wavelength =',l,'cm')\n",
+ "print '%s %.4f %s' % (' \\n wavelength =',L1,'A')"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " wavelength = 7.63e-32 cm\n",
+ " \n",
+ " wavelength = 0.0614 A\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 4 - pg 471"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the lifetime of this excited state\n",
+ "#initialisation of variables\n",
+ "import math\n",
+ "h= 6.624*10**-27 #ergs sec\n",
+ "c= 3*10**10 #cm/sec\n",
+ "u= 5 #cm**-1\n",
+ "#CALCULATIONS \n",
+ "T= h/(h*2*math.pi*c*u)\n",
+ "#RESULTS\n",
+ "print '%s %.1e %s' % (' lifetime of this excited state =',T,'sec')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " lifetime of this excited state = 1.1e-12 sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5 - pg 471"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the lifetime\n",
+ "#initialisation of variables\n",
+ "import math\n",
+ "V= 2.5*10**4 #m/sec\n",
+ "m= 30 #gms\n",
+ "s= 10*10**-16 #cm**2\n",
+ "N= 6.023*10**23 #molecules\n",
+ "T= 300 #K\n",
+ "k= 8.3*10**7\n",
+ "#CALCULATIONS\n",
+ "t= math.sqrt((m/(math.pi*k*T)))*(V/(4*s*N))\n",
+ "#RESULTS\n",
+ "print '%s %.1e %s' % (' lifetime =',t,' sec')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " lifetime = 2.0e-10 sec\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7 - pg 494"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the internuclear distances\n",
+ "#initialisation of variables\n",
+ "import math\n",
+ "h= 6.6238*10**-27 #ergssec\n",
+ "N= 6.0254*10**23 #molecules\n",
+ "c= 2.9979*10**10\n",
+ "Be= 60.809\n",
+ "mh= 1.00812 #gms\n",
+ "#CALCULATIONS\n",
+ "u= mh/2.\n",
+ "Re= math.sqrt(h*N/(c*8*math.pi**2*Be*u))\n",
+ "#RESULTS\n",
+ "print '%s %.4e %s' % (' internuclear distances =',Re,'cm ')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " internuclear distances = 7.4168e-09 cm \n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 8 - pg 497"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the Resonance energy\n",
+ "#initialisation of variables\n",
+ "H= 19.8 #kcal\n",
+ "H1= -0.8 #kcal\n",
+ "H2= -29.4 #kcal\n",
+ "#CALCULATIONS\n",
+ "H3= -85.8\n",
+ "H4= -49.2\n",
+ "H5= -H3+H4\n",
+ "#RESULTS\n",
+ "print '%s %.1f %s' % (' Resonance energy =',H5,'cal')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Resonance energy = 36.6 cal\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 9 - pg 500"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the no of bonds\n",
+ "#initialisation of variables\n",
+ "import math\n",
+ "R= 1.69 #A\n",
+ "l= 1.49 #A\n",
+ "r= 0.706\n",
+ "#CALCULATIONS\n",
+ "n= 10**((R-l)/r)\n",
+ "#RESULTS\n",
+ "print '%s %.2f' % (' no of bonds = ',n)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " no of bonds = 1.92\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10 - pg 504"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the lattice energy\n",
+ "#initialisation of variables\n",
+ "N= 6.*10**23 #molecules\n",
+ "R= 2.82 #A\n",
+ "e= 4.8*10**-10 #ev\n",
+ "n= 9.\n",
+ "z= 1.748\n",
+ "#CALCULATIONS\n",
+ "U= (N*z*e**2*(1-(1/n)))*182.2/(R*10**-8*7.63*10**12)\n",
+ "#RESULTS\n",
+ "print '%s %.1f %s' % (' lattice energy =',U,'kcal mole**-1')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " lattice energy = 181.9 kcal mole**-1\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11 - pg 507"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the least energy required for transfer\n",
+ "#initialisation of variables\n",
+ "import math\n",
+ "k= 13\n",
+ "e= 4.8*10**-10 #ev\n",
+ "h= 6.624*10**-27 #ergs sec\n",
+ "N= 6.023*10**23 #molecules\n",
+ "l= 1836 #A\n",
+ "#CALCULATIONS\n",
+ "I= e**4*0.080/(l*N*1.28*10**-13*2*k**2*(h/(2*math.pi))**2)\n",
+ "#RESULTS\n",
+ "print '%s %.2f %s' % (' least energy required for transfer=',I,' ev')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " least energy required for transfer= 0.08 ev\n"
+ ]
+ }
+ ],
+ "prompt_number": 10
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12 - pg 509"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#calculate the difference between potentials\n",
+ "#initialisation of variables\n",
+ "i= 54.4 #ev\n",
+ "i1= 24.6 #ev\n",
+ "k= 2.5 \n",
+ "#CALCULATIONS\n",
+ "I= i/(4*k**2)\n",
+ "I1= i1/(4*k**2)\n",
+ "d= I-I1\n",
+ "#RESULTS\n",
+ "print '%s %.1f %s' % (' difference between first and second potential=',d,'ev')\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " difference between first and second potential= 1.2 ev\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file