diff options
Diffstat (limited to 'Optical_fiber_communication_by_gerd_keiser/chapter7_1.ipynb')
-rwxr-xr-x | Optical_fiber_communication_by_gerd_keiser/chapter7_1.ipynb | 270 |
1 files changed, 270 insertions, 0 deletions
diff --git a/Optical_fiber_communication_by_gerd_keiser/chapter7_1.ipynb b/Optical_fiber_communication_by_gerd_keiser/chapter7_1.ipynb new file mode 100755 index 00000000..c47a16e1 --- /dev/null +++ b/Optical_fiber_communication_by_gerd_keiser/chapter7_1.ipynb @@ -0,0 +1,270 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:52945d2ecbd107493bfdff515b21007d6d8bd600f51e01015bc9fd9a03be50eb"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 7: Optical receiver operation"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.1, Page Number: 258"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "bon = 1.0 #signal on level\n",
+ "boff = 0.0 #signal off level\n",
+ "sigma_on = 1.0 #variance sigma-on level\n",
+ "sigma_off = 1.0 #variance sigma-on level\n",
+ "\n",
+ "#calculation\n",
+ "Q = (bon - boff)/(sigma_on + sigma_off) #parameter value\n",
+ "Vth = bon-Q*sigma_on #optimum decision threshold\n",
+ "\n",
+ "#result\n",
+ "print \"Q parameter value = \" ,Q\n",
+ "print \"Optimum decision threshold Vth = \",Vth"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Q parameter value = 0.5\n",
+ "Optimum decision threshold Vth = 0.5\n"
+ ]
+ }
+ ],
+ "prompt_number": 69
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.2, Page Number: 258"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import matplotlib.pyplot as plt\n",
+ "import numpy as np\n",
+ "import scipy as sp\n",
+ "from scipy import special\n",
+ "\n",
+ "%matplotlib inline\n",
+ "\n",
+ "#variable declaration\n",
+ "Q = 6.0 #parameter value from figure\n",
+ "\n",
+ "#calculation\n",
+ "Pe = (1.0/2.0)*(1-math.erf(Q/math.sqrt(2.0))) #probability of error \n",
+ "S_N_dB = 10*math.log10(2*Q) #signal to naoise ratio (dB)\n",
+ "\n",
+ "#result\n",
+ "print \"Probability of error = \" ,round(Pe,10)\n",
+ "print \"Signal to naoise ratio =\",round(S_N_dB,1),\"dB\"\n",
+ "\n",
+ "#plot\n",
+ "q1=arange(0.0, 8.0, 0.5)\n",
+ "Pe1 = (1.0/2.0)*(1-sp.special.erf(q1/sqrt(2.0))) \n",
+ "plot(-q1+8,-Pe1)\n",
+ "ylabel('BER (Pe)')\n",
+ "xlabel('factor Q')\n",
+ "title('Plot of BER (Pe) versus the factor Q')\n",
+ "text(6,-0.3,'Q=5.99 for')\n",
+ "text(6,-0.35,' Pe=10^-9') "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Probability of error = 1e-09\n",
+ "Signal to naoise ratio = 10.8 dB\n"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "pyout",
+ "prompt_number": 4,
+ "text": [
+ "<matplotlib.text.Text at 0xa73bd30>"
+ ]
+ },
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYkAAAEZCAYAAABiu9n+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl8VOX59/HPRYKgsoRFlgAalF12FKyyBAXc0bYqoLUU\nl1pbl/rzUbFu6GPV1sdaq9VflWrViktREXcpGrVWxQVUkEVUlKAJCrIobsD1/HFOcBhmMlkmOTOT\n7/v1mldm5tznPtdMkrnmXs59zN0RERFJpFHUAYiISOZSkhARkaSUJEREJCklCRERSUpJQkREklKS\nEBGRpJQkREQkKSWJHGVmJWZ2cj0d63QzKzezDWbWqj6OmSKeJma2yMza17KeM8zsmnTFlYnMbJqZ\n3Z2munY2s0fNbJ2Z3Z+OOiV6ShJZzMxWmNkmM9toZmVmdoeZ7Rpu9vCWqo4iM9tqZjX6WzCzxsB1\nwEHu3sLdv0hS/8aYOP9qZvlJXkfF7S/htl+Y2ZbwufVmtsDMDk8R1i+B5929PKzjH2b2bVjHGjN7\nxsx6VuHl3QacYGa7Vec9yVRmVmxmK+OeTufZtMcA7YDW7j6hppWEv/MX0xfWtnr7mNnsMIltMLO5\nZjYs3cfJNUoS2c2BI9y9OTAY2Ae4uIZ1WQ336wA0BRanKNcyjLMf8CPgNzHbtr2OmNtZMdtfCvct\nAG4G7jOzFpUc6zQg9tuxA38I6+gMrAb+keqFufu3wJPAz1OVrS0zy6vrYyQ7dBrr2gNY5u5b01hn\ntSV6L81sL+Al4C2gCOgIzALmmNm+9RpgllGSyBHu/gnwFLB3/DYLXBx+Yy83sztjPmRfCH+uC79p\n7/DNKuy++bOZrQpv15vZTmbWgx+Swzoz+3cV4vwMmAP0qcbLs3BfB/4J7Ap0T1jQbHdgT+DVJMf/\nGrgX6BuWLzSzB81stZl9YGZnxu1SAiRsuZjZLWZ2bdxzj5jZOanqDrt5ZprZ3Wa2HphsZkPN7PWw\nxVRmZteFZXdoAYS/ywPD+wn3iyu/K0HCKwx/zxvMrCNBAt0p/JvYYGYLzWxIzH6p3p+KcpcDlwAT\nwvqnmNmeZvasmX1uZp+Z2T/NrGXMPl3M7KGw7s/N7EYz6wX8L/CjsJ61YdmWZnZXWHaFmV1kZhZu\n+4WZvWRmfzKzz4HLEoQ4jeDLxiXuvs7dv3L3Gwn+nv6Q6DVJQEki+1X8o3QBDgXmJygzBZgMFBN8\ngDYDbgq3jQh/tgy/wSf6cL0IGAoMCG9DgYvdfRk/JKWW7j6mCnEWAgcDLyfaXpnwG+IU4DvgoyTF\n+gEfJPg2W3H8ZsAJwJvhh8yjBO9ZIXAQ8FszGxez3xKC15zIDGBbt4oF4zFjgXst6L5LVfd44F/u\n3jKs6wbg+vDxnkBl/fqx3UTx+z2wQ2H3r4BDgE/C33MLd/80fF/GEyTOlsBswr+NKr6GivovA64C\n7gvrvyOs+/cE39p7A10IPqwrfpePAR8StEA6Afe6+xKCluDLYT2tw0PcCDQHugKjCFp3U2JCGAq8\nT9DddVWC92sM8K8Ez/8LGGFmOyXYJihJZDsDZpnZF8CLBN96E/2DnABc5+4rwg+LC4GJ4YdAVbob\njgeucPfP3f1z4HLgxJgYquLzMM5S4EvgwUSvI+YWO+i+X7jv18C1wM/COBIpADbGPWfA/wnreA/Y\nBfgFwQdLW3e/0t03u/uHwHRgYsy+Gwk+PBP5D+BmVpFojwH+6+5lwL5VqPu/7j4bwN2/IUh+3c2s\nrbtvcvd5SY4bL36/hK0okv+uXnT3p2JaahVJsSqvIb7+bcdw9/fdfa67fx/+vq4n+ICH4L3vCJzn\n7l+7+7fu/t9EcYYJZQJwYdgC+IhgHOzEmGKfuPtf3X1r+F7Gawt8muD5T4E8oHWCbYKSRLZz4Ch3\nb+XuRe5+RtiPHq8j23/z/hjIB6o6+6cwwf6F1Yy1jbu3IviA/i/wdMy22NdRcft7zPZXwn1bEXzT\nHVnJcb4g+MYZy4Frw3o7uvvR4QfeHgTdL9uSE0ECbRezb3NgfaIDhR+q9wGTwqeOB+4J71el7tK4\nKk8GegCLzWyepR6gr+1+Fcpj7m8CmoZfIKryGpIys/Zmdp+ZlYZdancDbcLNXYCPqjh+0RZozI5/\ng51iHscPyMf7nMR/sxVdbmuqEEeDpCTRMHxCMFhXYXdgM8GHQ1VmtyTa/5OaBBJ+y7uToHVQrW9v\nYSvodOBEMxuYpNjbQFfbcbZWom/RHwMfxiWnFu5+REyZ3sCCSsK6FzjGzPYg+HZc0UJKVfcOs8/c\nfbm7H+/uuxH0k880s52BrwiSa/BCgm/Wu1Vhv3iJfteV/f5XpngNqeq6CtgC9A27wk7kh8+clcDu\nlnjAPr6ez4Hv2fFvMDbJpvo7/jdwbILnjyPo2vo+xf4NlpJEw3AvcI4F01Gb8UPf8VbgM2ArsFeK\n/S82s7Zm1ha4lO1nD1VFxZhAE4IPi0/dfW389lTCKbbTwxgSbS8FlgOxA/DJ6p4HbDSz8y2Y459n\nZn3NbJ+YMqMIBnyTxbOA4ENsOvCUu2+oYt07xGRmP7MfptuuJ/jg2wosI/h2f5gFU44vBppUYb94\n5UAb235mWGXve1Xen+1eQtzjZgQJboOZdQLOi6v7U+AaM9vFzJqa2f4xcXYOXyvuvoVgnOX3ZtYs\nTMjnEHSNVdXlwP5mdqWZtTKz5uEg/C9I8rckgUiThJkdYmZLzOw9M7sgSZm/hNvfMrNB9R1jjrid\n4EP9BeADgi6FMwHcfRPB4OJLYZfC0AT7Xwm8TvAt/e3w/pUx26vSGllnZhuBMoIP8PFx2x+17c+T\nqPhGnuh8jz8Dh5lZ3yTH+hvb91cnPGckTJJHAAMJ3pfPgFuBFgBm1pRgMsCdKV7bDODA8GeV6k4S\n08HAwvB9uh6YGPbVrwd+TZCIKsZ0VqbaL8HrXUKQ8D8ws7X2w+ym+Dg8LL8lxWvY4RBxdV1OMDV7\nPcEA+INxdR8JdCNoda0k+FYPMBdYBJSZ2erwuTMJEs4HBONv9wB3JDnujoG5LweGE4y3rCDolrwC\nONrdn61s34bOPKIr04XNzKUEsw5WAa8Bk9x9cUyZw4Az3P0wC6Zm3uDu+0USsGSNcKbKfOBAD0+o\nq2E9ZwCd3X1q2oKTjBC2bF4BLnP326OOJ5Plpy5SZ4YCy919BYCZ3QccxfYnZY0n/Bbn7q+aWYGZ\nta/NP77kPnf/jgTni9SgnptSl5Js5O6rzOxQ4Cgz2zUc75IEokwSndi+yVzK9v3Iycp0ZvvZGCIi\n1ebuC4GFUceR6aIck6hqP1f8YFg0/WMiIg1QlC2JVQRzpSt0Ycd54/FlOofPbcfMlDhERGrA3Sud\nWRhlS+J1grNEi8KBxgkEJ0rFmk24uJqZ7QesSzYe4e4Zf7vssssijyFX4syGGLMxzq1bnS++cBYt\ncp55xvnHP5zf/975zW+co492hg51OnVyGjd22rVzBg50Dj/cOfVUZ9o057bbnMcfdxYscDZt0vuZ\n6beqiKwl4e6bw9kjTxOcFv93d19sZqeF2//m7k+Ec8OXE0x/m1JJlSJSS2ZQUBDc+lSyBOOWLbB6\nNXzyCaxa9cPPl18Ofq5aBaWlMH48HH88HHQQ5EfZbyE1Fumvzd2fJO5EJXf/W9zjM+o1KBFJKS8P\nOnYMbkOGJC5TVgYPPACXXgqTJ8NxxwUJY9iwIBlJdtAZ1/WouLg46hCqJBvizIYYoWHH2aEDnHUW\nvPoq/Oc/sNtu8ItfQLducMklsDjVFUgSaMjvZ1QiO5kunczMc+F1iOQ6d5g/H2bMgHvvhXbt4IQT\nYOJE6Nw56ugaHjPDUwxcK0mISCS2bIEXXggSxkMPQf/+QXfUT38KrbVwd71QkhCRrPDtt/Dkk0HC\nePppKC4OWhhHHAG77JJyd6khJQkRyTobNsDDDwcJY948zZCqS0oSIpLVysvh/vuDhPHhh3DNNTBF\nE+HTRklCRHLGwoVw5JFwxhlw7rlRR5MblCREJKeUlsLYsXDMMXDFFTrforaUJEQk53z2GRx8MAwf\nDn/+MzTS2V41VpUkobdXRLLKbrvBc88F51ucdBJs3hx1RLlNSUJEsk7LlsFU2bIymDAhmEIrdUNJ\nQkSy0i67wCOPBOMSRx4JX+nacnVCSUJEslaTJnDffcGSHuPGwbp1UUeUe5QkRCSr5efD9Omw774w\nenSwhLmkj5KEiGS9Ro3g+uvhqKNg5EhYuTLqiHKHTnIXkZxgBtOmBYPaI0bAnDnQvXvUUWU/JQkR\nySnnnAMtWgSLBD75ZLC6rNSckoSI5JyTTw4SxdixwQyo/faLOqLspTEJEclJxx4L//hHsIrs3LlR\nR5O9lCREJGcdeijMnAmTJgUtCqk+dTeJSE4bOTIYmzjiCNi4EX72s6gjyi5KEiKS84YMCbqcDj44\nuKjRr38ddUTZQ0lCRBqEPn2Ca2qPHQvr18OFF0YdUXZQkhCRBqNr1yBRjBsXJIqrr9Y1KVLR9SRE\npMFZsyYY1B4yBP7614Z7TQpdT0JEJIE2bYIxinfeCZbzkOTUkhCRBmvhQjjoIHj/fWjWLOpo6p9a\nEiIilejbFw48EG68MepIMpdaEiLSoC1ZEiwIuHx5sDhgQ6KWhIhICr16BYPYN9wQdSSZSS0JEWnw\nli8PFgF87z1o1SrqaOqPWhIiIlXQrVtwwaI//SnqSDKPWhIiIsCKFcF5E0uXQtu2UUdTP9SSEBGp\noqIiOO44uPbaqCPJLGpJiIiEVq6EAQNg8WJo3z7qaOpeVVoSShIiIjHOOgvy8xvG+ETGJgkzaw3c\nD+wBrACOc/d1CcrdDhwOrHb3fpXUpyQhImnx6aew997B2diFhVFHU7cyeUxiKjDH3XsAc8PHidwB\nHFJvUYlIg9exI0yZEqwQK9G1JJYAo9y93Mw6ACXu3itJ2SLgUbUkRKS+rF4NvXvD/Pmw++5RR1N3\nMrkl0d7dy8P75UADGCISkWzRrh2ceipcdVXUkUSvzi46ZGZzgA4JNl0U+8Dd3cxq3QyYNm3atvvF\nxcUUFxfXtkoRacDOOw969oQLLgguVpQLSkpKKCkpqdY+UXY3Fbt7mZl1BJ5Td5OIZJpLL4XSUrj9\n9qgjqRuZ3N00G5gc3p8MzIooDhGRpM45B2bPDtZ0aqiiShLXAGPNbBlwYPgYMys0s8crCpnZvcB/\ngR5mttLMpkQSrYg0SK1awdlnwxVXRB1JdHQynYhIJTZsCBYAfP75YMZTLsnk7iYRkazQogX8z//A\n5ZdHHUk01JIQEUnhyy+D1sScOdAv6RSa7KOWhIhIGjRrFkyJveyyqCOpf2pJiIhUwaZNQWviscdg\n8OCoo0kPtSRERNJkl13gwgsbXmtCLQkRkSr65hvo3h0efBCGDo06mtpTS0JEJI2aNoWLLgrOxG4o\nlCRERKrhpJNgyRJ46aWoI6kfShIiItWw005wySUNpzWhJCEiUk0//zl89BFUc0HVrKQkISJSTY0b\nBy2JSy6BXJ8zoyQhIlIDJ5wAn30G//531JHULSUJEZEayMuDadNyvzWhJCEiUkPHHRes6/TEE1FH\nUneUJEREaqhRo2B12Esvzd3WhJKEiEgt/PjHsHUrPPJI1JHUDSUJEZFaqGhNXHZZkCxyjZKEiEgt\nHXlkcJLdgw9GHUn6aYE/EZE0ePJJOPdceOedYOZTNtACfyIi9eSQQ6CgAO6/P+pI0kstCRGRNJk7\nF04/Hd59F/Lzo44mNbUkRETq0YEHQrt2MHt21JGkj5KEiEiamMGkSfDww1FHkj7qbhIRSaPSUujf\nH8rLg4UAM5m6m0RE6lnnztCtG7zwQtSRpIeShIhImh19NMyaFXUU6aHuJhGRNHv3XTj4YPj442Cc\nIlOpu0lEJAK9e8POO8Obb0YdSe0pSYiIpJlZ7nQ5KUmIiNQBJQkREUlq2LDg8qbLl0cdSe0oSYiI\n1IG8PBg/PvuvM6EkISJSR3Khy0lTYEVE6sg330CHDrBsWbCmU6bRFFgRkQg1bQrjxsGjj0YdSc1F\nliTMrLWZzTGzZWb2jJkVJCjTxcyeM7NFZrbQzM6KIlYRkZo6+ujsXvAvsu4mM/sj8Lm7/9HMLgBa\nufvUuDIdgA7uvsDMmgFvAEe7++K4cupuEpGMtG4d7L47rFoFzZtHHc32Mr27aTxwZ3j/TuDo+ALu\nXubuC8L7XwKLgcJ6i1BEpJYKCuBHP4Knn446kpqJMkm0d/fy8H450L6ywmZWBAwCXq3bsERE0iub\nZznV6QX2zGwO0CHBpotiH7i7m1nS/qKwq2kmcHbYohARyRrjx8NFF8H332f+NSbi1WmScPexybaZ\nWbmZdXD3MjPrCKxOUq4x8CDwT3dPmounTZu27X5xcTHFxcU1DVtEJK06dYLu3eH552HMmOjiKCkp\noaSkpFr7RD1wvcbd/2BmU4GCBAPXRjBescbdz6mkLg1ci0hGu/rqYPD6ppuijuQHVRm4jjJJtAYe\nAHYHVgDHufs6MysEbnP3w81sOPAC8DZQEeiF7v5UXF1KEiKS0RYvhrFjYeXKzLnGRFqShJl1ASYC\nIwhmFn0NLAQeA550963pCbfmlCREJNO5Q69ecM89sM8+UUcTqPUUWDO7A7gd+Ba4BpgE/Br4N3Ao\n8JKZjUxPuCIiuStbrzFRaUvCzPq6+8JKtjcBurh7pIvhqiUhItng5Zfh1FNhYdJP1fqV1jEJM9sZ\n2N3dl6YjuHRSkhCRbLB1KxQWwosvBrOdopa2M67NbDywAHg6fDzIzGbXPkQRkYajUSM46qjsusZE\nVc+4ngYMA74AcPf5wJ51FJOISM7KtnGJqiaJ7919Xdxzkc9qEhHJNgceGIxJlJenLpsJqpokFpnZ\nCUC+mXU3sxuB/9ZhXCIiOalJEzjkEJidJR32VU0SZwB7E0yFvRfYAPy2roISEcll2dTllGoK7M7A\nr4BuBGc93+7u39dTbFWm2U0ikk3Wr4cuXaK/xkQ6ZjfdCQwB3iE4ee7/pSk2EZEGq2VL2H9/eOqp\n1GWjlipJ9Hb3n7n7/wLHADq7WkQkDbKlyylVkthcccfdN1dWUEREqm78eHjiCfjuu6gjqVyqJNHf\nzDZW3IB+MY831EeAIiK5qLAQevYMrjGRySpNEu6e5+7NY275Mfdb1FeQIiK5KBu6nFKtAtssVQVm\nFuHYvIhI9jr66GCJjq0ZfGpyqu6mR8zsOjMbaWa7VjxpZnuZ2clm9gxwSN2GKCKSm3r1gmbN4I03\noo4kuVRJYgzwLHAawVnXG8xsLfBPoCPwc3f/Vx3HKCKSszK9yymyy5emk06mE5Fs9corcPLJsGhR\n/R87bUuFi4hI3Rg6FNauhWXLoo4kMSUJEZEIZfo1JpQkREQi9uMfZ+64RI2ShJm1MrOL0h2MiEhD\nNHo0vPsulJVFHcmOUp0nsbuZ3Wpmj5vZKWbWzMyuA5YB7esnRBGR3LbTTpl7jYlULYm7gE+AG4G+\nwOtAJ6Cfu59Vx7GJiDQYmToVNtX1JN5y9wExj0uBPdx9S30EV1WaAisi2W7DBujcGUpLoUU9LXqU\njimwZmatw1sbYC3QsuK5tEUqItLAtWgBBxyQedeYSNWSWAEkLeDuXesgpmpTS0JEcsHf/hasCjtj\nRv0cryotCZ1xLSKSIT79FPr0gfLyYDC7rtW6u8nMfhZz/4C4bWfULjwREYnVsWOw6F9JSdSR/CDV\nmMS5Mfdvitt2cppjERFp8DJtlpPOuBYRySCZdo0JJQkRkQzSs2cw0+n116OOJJCfYnsvM3snvL9X\nzH2AveooJhGRBq2iy2no0KgjSd2S6A0cGd76xNyveCwiUq9KS0s56qij6NGjB3vttRdnnnkm3333\nXZX3Ly4uplevXgwaNIhBgwbx+eef71Dmu+++Y8qUKfTv35+BAwfy/PPPb9t2//33M2DAAPr27cvU\nqVMTHuO7775jzJgxDBo0iH/9q/rXZcukcYlKk4S7r4i/AV8CH4X3RUTqjbvzk5/8hJ/85CcsW7aM\n9957j6+//przzz+/ynWYGTNmzGD+/PnMnz+ftm3b7lDmtttuo1GjRrz99tvMmTOHc88N5vCsWbOG\n888/n2effZaFCxdSVlbGs88+u8P+b775JmbG/PnzOfbYY6sU19aYQYh994X162Hp0iq/rDqTagrs\nj8ysxMweMrPBZrYQWAisNrND6ydEEZHAs88+y84778zkyZMBaNSoEddffz133XUXmzZtqnI9qc6r\nWrx4MaNHjwZgt912o6CggNdee40PPviA7t2706ZNGwAOOuggHnzwwe32Xb16NSeeeCKvvfYagwYN\n4oMPPmDu3LkMHjyY/v37c/LJJ29r+RQVFTF16lSGDBnCzJkzt9WRSdeYSNXddBNwFXAvwbWuT3H3\nDsAI4OqaHjRc1mOOmS0zs2fMrCBBmaZm9qqZLTCzhWY2rabHE5HcsGjRIoYMGbLdc82bN6eoqIjl\ny5ezbNmybd1IsbfBgwezYcOGbftMnjyZQYMGceWVVyY8zoABA5g9ezZbtmzhww8/5I033qC0tJTu\n3buzdOlSPvroIzZv3sysWbNYuXLldvu2a9eO6dOnM2LECObPn09hYSFTpkzhgQce4O2332bz5s3c\ncsstQNCqadu2LW+88QbHHXfcdvVkSpdTqoHrPHd/BsDMrnD3VwDcfYmZ1eYU56nAHHf/o5ldED7e\nrnPP3b8xs9HuvsnM8oH/mNmT7v5qLY4rIlnMrNKTg+nRowfz58+vtMw999xDYWEhX375JT/96U+5\n++67OfHEE7crc9JJJ7F48WL22Wcf9thjD/bff3/y8vIoKCjglltuYcKECTRq1Ij999+f999/f4dj\nxLZUli5dSteuXenWrRsQJKi//vWvnH322QBMmDAhYZzFxbB4cXAWdseOlb6kOpUqScQmgm/SeNzx\nwKjw/p1ACXFJAsDdK9qPOwGNgQyZOSwiUejTp8923TIAGzZsoKysjJ49e7J06VImTpyYcN+SkhJa\ntmxJYWEhAM2aNeP4449n3rx5OySJvLw8/vSnP217fMABB9CjRw8AjjjiCI444ggAbr31VvLzU32M\nbs/dt0t2u+66a8JyO+0Ehx4aXGPitNOqdYi0StXd1N/MNprZRqBfxf2Kx7U4bnt3Lw/vl5PkAkZm\n1sjMFoRlnnH312pxTBHJcgcddBCbNm3i7rvvBmDLli2ce+65nHnmmTRp0oSePXtuG5COv7Vs2ZIt\nW7Zsm830/fff8+ijj9Kv344fZV9//TVfffUVAHPmzKFx48b06tULCMYcAL744gtuueUWTjnllEpj\n7tmzJytWrNjW4rj77rsZNWpUpftUyIQup1Szm/LcvXl4y4+539zdK02f4ZjDOwlu4+OO4SRZadbd\nt7r7QKAzMMzM9q7m6xORHPPwww8zc+ZMevToQdu2bcnLy+PCCy+s0r7ffvsthxxyCAMGDGDQoEF0\n6dKFU089FYBHH32Uyy67DIDy8nKGDBlCnz59uPbaa7clJYDf/va37L333gwfPpwLL7xwWzdSLDPb\n1lpo2rQpd9xxB8ceeyz9+/cnPz+fX/3qV9vKVeaQQ+Cll4JrTUQlklVgzWwJUOzuZWbWEXjO3Xul\n2OcSYJO7X5dgm1f8ciGYB11cXJzmqEUk07z88stMmjSJWbNmMXDgwKjDqROHHQaTJ0OSoYtqKSkp\noSRm9cDLL788M5cKN7M/Amvc/Q9mNhUocPepcWXaApvdfZ2Z7Qw8DVzj7k8kqE9LhYtITrr1Vnju\nObj33vTXnbHXkwivavcAsDuwAjguTAaFwG3ufriZ9Qf+AeQRdIvd7+4J56spSYhIriorC5YPLy+H\nJk3SW3fGJol0U5IQkVw2bBhcfTUceGB6603HNa5FRCRio0cHlzWNgpKEiEiGGzUKXnghmmOru0lE\nJMNt2ACFhbBmTXrHJdTdJCKSA1q0CAav582r/2MrSYiIZIGoupyUJEREssDIkdEMXmtMQkQkC6xd\nC0VFwbhE48bpqVNjEiIiOaJ1a+jaFd58s36PqyQhIpIlouhyUpIQEckSo0YpSYiIVFlRURH9+/dn\nwIABHHzwwZSXl6feqRI33XQT3bp1o1GjRqxdu3a7bWeddRbdu3dnwIABO1z9bvPmzRx++OHstttu\nLFq0qNJj3HDDDfTr14++fftyww03VCu+kSODpcO3bKnWbrWiJCEiWcvMKCkp4a233mKfffbhqquu\nqlV9w4cPZ+7cueyxxx7bPf/EE0+wfPly3nvvPW699VZOP/307baffvrp9OnTh1mzZjFhwgRWrVqV\nsP6FCxcyffp0XnvtNd566y0ee+yxhJc/TaZdu+BSpm+9Vf3XVlNKEiKSE0aMGMHy5cvZunUr5513\nHkOHDmXAgAHceuutVa5j4MCBOyQIgNmzZzN58mQAhg0bxrp167a1Wq644gpatWrFtddeywEHHMD0\n6dOZNGkSGzdu3KGeJUuWMGzYMJo2bUpeXh6jRo3ioYceqtbrrO8up+pdnFVEJMNUTH9/7LHH6N+/\nP3//+98pKChg3rx5fPvttwwfPpxx48bRpk0bRo4cucP+ZsaMGTO2XZ40kVWrVtGlS5dtjzt37kxp\naSnt27fn0ksv3a7sfvvtxwtJznrr27cvF110EWvXrqVp06Y8/vjjDB06tFqvd9QoeOABOOecau1W\nY0oSIpLVRo8eTV5eHgMGDOD3v/89J598Mu+88w4zZ84EYMOGDSxfvpyioqIdxhKqI/5crFSXHk2k\nV69eXHDBBYwbN45dd92VQYMG0ahR9Tp0Ro6EM8+ErVuhmrvWiJKEiGS1kpISWrduvd1zN910E2PH\njt3uuY0bNzJixIiEH+4zZsygd+/eSY/RqVMnVq5cue1xaWkpnTp1ShnbypUrGT9+PBCMW/zyl7/k\npJNO4qSTTgLgd7/7HbvvvnvKeraPBQoKYNEi6NevWrvWiJKEiOSUgw8+mJtvvpnRo0eTn5/PsmXL\n6Ny5M82bN2fBggVVrie25TB+/HhuuukmJk6cyCuvvEJBQQHt27dPWUeXLl12aL2sXr2adu3a8fHH\nH/Pwww95AkeEAAALmElEQVTz6quvVv3FhSrWcaqPJKGBaxHJWolaBaeccgp9+vRh8ODB9OvXj9NP\nP53NmzdXqb6//OUvdOnShVWrVtG/f39++ctfAnDYYYex55570q1bN0477TRuvvnmGsd8zDHHsPfe\nezN+/HhuvvlmWrRoUe066nPwWms3iYhkmRUrgkualpVBDYZGttHaTSIiOaioCJo2hWXL6v5YShIi\nIlmovrqclCRERLJQfS32pyQhIpKFKloSdT0cqyQhIpKFunULTqj78MO6PY6ShIhIFjKrny4nJQkR\nkSxVcVJdXVKSEBHJUvUxw0lJQkQkS/XuDRs3QsyyUmmnJCEikqUqxiXqsstJSUJEJIvVdZeTkoSI\nSBar6xlOShIiIlmsXz/47LNgsb+6oCQhIpLF8vJg+PC6G5dQkhARyXJ12eWkJCEikuXq8qQ6XXRI\nRCTLbd4MbdrA++9D27ZV3y9jLzpkZq3NbI6ZLTOzZ8ysoJKyeWY238werc8YRUSyRX4+/OhH8OKL\n6a87qu6mqcAcd+8BzA0fJ3M28C6gpoKISBJ11eUUVZIYD9wZ3r8TODpRITPrDBwGTAdqcSVXEZHc\nVlcn1UWVJNq7e3l4vxxon6Tc9cB5wNZ6iUpEJEvtsw+89x6sW5feevPTW90PzGwO0CHBpotiH7i7\nm9kOXUlmdgSw2t3nm1lxquNNmzZt2/3i4mKKi1PuIiKSM3baCYYOhZdegsMPT1ympKSEkpKSatUb\nyewmM1sCFLt7mZl1BJ5z915xZa4CTgQ2A02BFsCD7v7zBPVpdpOINHhXXAFffgl//GPVymfs7CZg\nNjA5vD8ZmBVfwN1/5+5d3L0rMBF4NlGCEBGRQF2cVBdVkrgGGGtmy4ADw8eYWaGZPZ5kHzUVREQq\nMWwYLFoUtCbSRSfTiYjkkJEj4eKLYdy41GUzubtJRETqQLq7nJQkRERySLpPqlN3k4hIDvnqK2jf\nPrjGxM47V15W3U0iIg3MrrtC377wyivpqU9JQkQkx6Szy0lJQkQkx6RzHSeNSYiI5Jj166FTJ1iz\nBpo0SV5OYxIiIg1Qy5bQsye8/nrt61KSEBHJQenqclKSEBHJQelKEhqTEBHJQWvWQNeusHZtcHnT\nRDQmISLSQLVpA0VF8OabtatHSUJEJEelo8tJSUJEJEeNHFn7k+o0JiEikqPKy6FXL/j8c8jL23G7\nxiRERBqw9u2hQwd4++2a16EkISKSw2rb5aQkISKSw2o7eK0xCRGRHFZaCgMHwurV0CiuWaAxCRGR\nBq5z52Atp8WLa7a/koSISI6rTZeTkoSISI5TkhARkaQqZjjVZOhWSUJEJMcVFUHjxvDee9XfV0lC\nRCTHmdW8y0lJQkSkAajpSXVKEiIiDUBFS6K64xJKEiIiDUD37vD997BiRfX2U5IQEWkAzGrW5aQk\nISLSQNRk8FpJQkSkgVCSEBGRpHr3hvXrg0X/qkpJQkSkgWjUqPrjEkoSIiINSHW7nJQkREQakOq2\nJPLrLpTkzKw1cD+wB7ACOM7d1yUotwLYAGwBvnf3ofUYpohIzunfH8rKoLy8auWjaklMBea4ew9g\nbvg4EQeK3X1QLiSIkpKSqEOokmyIMxtiBMWZboqz9vLyYPjwqrcmokoS44E7w/t3AkdXUrbSS+tl\nk0z+w4mVDXFmQ4ygONNNcaZHdbqcokoS7d29orFTDrRPUs6Bf5vZ62Z2av2EJiKS26ozeF1nYxJm\nNgfokGDTRbEP3N3NLNmSUwe4+6dmthswx8yWuPuL6Y5VRKQhGTwYPvqoamXNa3KpoloysyUEYw1l\nZtYReM7de6XY5zLgS3e/LsG2+n8RIiI5wN0r7dKPZHYTMBuYDPwh/DkrvoCZ7QLkuftGM9sVGAdc\nnqiyVC9SRERqJqqWRGvgAWB3YqbAmlkhcJu7H25mewIPhbvkA/e4+9X1HqyISAMWSZIQEZHskNVn\nXJvZIWa2xMzeM7MLoo4nGTO73czKzeydqGNJxsy6mNlzZrbIzBaa2VlRx5SImTU1s1fNbEEY57So\nY6qMmeWZ2XwzezTqWJIxsxVm9nYY57yo40nEzArMbKaZLTazd81sv6hjimdmPcP3sOK2PoP/j84J\n/3/eMbMZZtYkadlsbUmYWR6wFBgDrAJeAya5++JIA0vAzEYAXwJ3uXu/qONJxMw6AB3cfYGZNQPe\nAI7O0PdzF3ffZGb5wH+As9391ajjSsTM/gcYAjR39/FRx5OImX0IDHH3tVHHkoyZ3Qk87+63h7/3\nXd19fdRxJWNmjQg+l4a6+8qo44llZp2AF4He7v6tmd0PPOHudyYqn80tiaHAcndf4e7fA/cBR0Uc\nU0LhtN0voo6jMu5e5u4LwvtfAouBwmijSszdN4V3dwIaA1sjDCcpM+sMHAZMJ/NPCs3Y+MysJTDC\n3W8HcPfNmZwgQmOA9zMtQcTIB3YJE+4uBAktoWxOEp2A2F9Aafic1JKZFQGDgEz9dt7IzBYQnIj5\njLu/FnVMSVwPnEeGJrEYmX7SalfgMzO7w8zeNLPbwtmPmWwiMCPqIBJx91XAdcDHwCfAOnf/d7Ly\n2ZwksrOfLMOFXU0zCbpwvow6nkTcfau7DwQ6A8PMbO+oY4pnZkcAq919Phn8LT10gLsPAg4FfhN2\nj2aSfGAwcLO7Dwa+Ivl6b5Ezs52AI4F/RR1LImbWimBppCKC3oJmZnZCsvLZnCRWAV1iHnchaE1I\nDZlZY+BB4J/uvsO5K5km7HJ4Djgk6lgS2B8YH/b33wscaGZ3RRxTQu7+afjzM+Bhgq7cTFIKlMa0\nGGcSJI1MdSjwRvh+ZqIxwIfuvsbdNxOcarB/ssLZnCReB7qbWVGYuScQnKQnNWBmBvwdeNfd/xx1\nPMmYWVszKwjv7wyMJRg/ySju/jt37+LuXQm6Hp51959HHVc8M9vFzJqH9ytOWs2oWXjuXgasNLMe\n4VNjgEURhpTKJIIvBpnqI2A/M9s5/L8fA7ybrHBUZ1zXmrtvNrMzgKeBPODvmTgTB8DM7gVGAW3M\nbCVwqbvfEXFY8Q4Afga8bWbzw+cudPenIowpkY7AneHstkbA/e7+RMQxVUWmdo+2Bx4OPiu2nbT6\nTLQhJXQmcE/4hfB9YErE8SQUJtoxQCaO7QDg7vPMbCbwJrA5/HlrsvJZOwVWRETqXjZ3N4mISB1T\nkhARkaSUJEREJCklCRERSUpJQkREklKSEBGRpJQkROKY2VnhctR312Df34Yn+dU2hovNbJmZLTWz\nEjPLyNWDJffpPAmROGa2GDjI3T+pwb4fAvu4+5pq7NPI3bfGPD6DYKmRY9z9GzMbS3Cy094xK+CK\n1Au1JERimNn/AnsCT4Wtgn3N7L/h6qMvVSwNEV5M6P+FF215y8zOMLMzCRZMe87M5oblJoUX9HnH\nzK6JOc6X4f4LgPgL6JwPnOHu3wC4+xyC9f+TLsImUlfUkhCJE3sRnnBdo03uvsXMxgC/cvdjzOx0\nYDQw0d23mlkrd/8ibt9C4GWCxejWAc8Af3H3R8xsK8G13WfGHbsFweJrbeKePwvo6u7n1PXrF4mV\ntWs3idSTAuAuM+tGsP5Sxf/MQcAtFd1E7p7oolL7As9VdD2Z2T3ASOARYAvBirtVlenLjUuOUneT\nSOX+LzA3vOzseCB2UDrVB7fHlTF+WOjvG0/QjHf3DcBXZtY1btMQgkv0itQrJQmRyrUguHoXwC9i\nnp8DnBauRltxIReAjeE+EHyojzKzNmG5icDzVTjmtcBfzKxpWPcYoDfBdRRE6pWShMiOYr/h/xG4\n2szeJFiSvmLbdILLP74dDj5PCp+/lWDQe254MZ+pBBdGWgC87u6PJjjG9gd3vxGYF9b9IXAnMNbd\nv0vLqxOpBg1ci2Sw8PoEDwPz3P3iqOORhkdJQkREklJ3k4iIJKUkISIiSSlJiIhIUkoSIiKSlJKE\niIgkpSQhIiJJKUmIiEhS/x8iKeBNY2dz/AAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xa4e30b8>"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.3, Page Number: 259"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 7.3(a)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "s_n=8.5 #signal-to-noise ratio\n",
+ "s_n_db=18.6 #signal-to-noise ratio (dB)\n",
+ "tele_rate=1.544 #telephone rate\n",
+ "v_by_sig=12.0 #peak signal-to-rms-noise ratio\n",
+ "v_by_sig_db=21.6 #peak signal-to-rms-noise ratio(dB)\n",
+ "\n",
+ "#calculation\n",
+ "Pe1=(1.0/math.sqrt(2.0*math.pi))*(math.exp(-((s_n**2.0)/8.0))/(s_n/2.0)) #Probability of error 1 \n",
+ "q=v_by_sig/2 #parameter value\n",
+ "ber=(1.0/2.0)*(1.0-math.erf(q/math.sqrt(2.0))) #bit error rate or Probability of error 2\n",
+ "\n",
+ "#result\n",
+ "print \"Probability of error for signal-to-noise ratio 8.5 = \", round(Pe1,5)\n",
+ "print \"Probability of error for peak signal-to-rms-noise ratio 12.0 = \", round(ber,10)\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Probability of error for signal-to-noise ratio 8.5 = 1e-05\n",
+ "Probability of error for peak signal-to-rms-noise ratio 12.0 = 1e-09\n"
+ ]
+ }
+ ],
+ "prompt_number": 71
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 7.3(b)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "v_by_sig=13.0 #peak signal-to-rms-noise ratio for SONET\n",
+ "v_by_sig_db=22.3 #peak signal-to-rms-noise ratio(dB) for SONET\n",
+ "\n",
+ "#calculation\n",
+ "q=v_by_sig /2 #parameter value\n",
+ "ber=(1.0/(2.0*4.0))*(1.0-math.erf(q/math.sqrt(2.0))) #bit error rate or Probability of error \n",
+ "\n",
+ "#result\n",
+ "print \"Probability of error for peak signal-to-rms-noise ratio 13.0 = \", round(ber,11), \"OR\",round(ber/10,12)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Probability of error for peak signal-to-rms-noise ratio 13.0 = 1e-11 OR 1e-12\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 7.4, Page Number: 262"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#variable declaration\n",
+ "h = 6.625*10**-34 #planks constant(J*s)\n",
+ "C = 3*10**8 #freespace velocity(m/s)\n",
+ "B = 10**6 #data rate(Mb/s)\n",
+ "Lambda = 850*10**-9 #Wavelength (m)\n",
+ "\n",
+ "#calculation\n",
+ "tuo = 2.0/B\n",
+ "E = 20.7*h*C/Lambda #Energy of incident photon\n",
+ "Pi = E/tuo #Minimum incident optical power(W)\n",
+ "Pi_db = 10.0*(math.log10(Pi))-(-40) #optical power level with reference 1mW = -40dBm\n",
+ "\n",
+ "#result\n",
+ "print \"Minimum incident optical power = \",round(Pi*10**13,2),\"pW\"\n",
+ "print \"Optical power level with reference 1mW = \",round(Pi_db,1),\"dBm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Minimum incident optical power = 24.2 pW\n",
+ "Optical power level with reference 1mW = -76.2 dBm\n"
+ ]
+ }
+ ],
+ "prompt_number": 75
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |