diff options
Diffstat (limited to 'Optical_fiber_communication_by_gerd_keiser/chapter5_1.ipynb')
-rwxr-xr-x | Optical_fiber_communication_by_gerd_keiser/chapter5_1.ipynb | 270 |
1 files changed, 270 insertions, 0 deletions
diff --git a/Optical_fiber_communication_by_gerd_keiser/chapter5_1.ipynb b/Optical_fiber_communication_by_gerd_keiser/chapter5_1.ipynb new file mode 100755 index 00000000..e65f2645 --- /dev/null +++ b/Optical_fiber_communication_by_gerd_keiser/chapter5_1.ipynb @@ -0,0 +1,270 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:36c911cea36773d62dbfdfd257319508866d11b39912270afd0ba3c55a7245e6"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chepter 5: Power launching and coupling"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.1, Page Number: 192"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#variable declartion\n",
+ "phi = 0 #lateral coordinate(degree)\n",
+ "Half_power = 10 #half power beam width(degree)\n",
+ "\n",
+ "#calculation\n",
+ "teta = Half_power/2\n",
+ "teta_rad = teta/57.3\n",
+ "L = math.log(0.5)/math.log(math.cos(teta_rad)) #power distribution co-efficient\n",
+ "\n",
+ "#result\n",
+ "print \"Power distribution co-efficient L = \" ,round(L)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Power distribution co-efficient L = 182.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 14
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.2, Page Number: 194"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#variable declartion\n",
+ "rs = 35.0*1e-6 #the source radius (meter)\n",
+ "a = 25.0*1e-6 #the core radius of stepindex fiber (meter)\n",
+ "NA = 0.20 #the numerical aperture value\n",
+ "Bo = 150.0*1e4 #radiance ( W/cm^2 * sr)\n",
+ "\n",
+ "#calculation\n",
+ "Ps = ((math.pi**2)*(rs**2))*Bo #power emitted by the source\n",
+ "PLED_step = Ps*(NA**2) #for larger core fiber(W)\n",
+ "PLED_step1 = (((a/rs)**2)*Ps)*(NA**2) #for smaller core fiber at the end face(W)\n",
+ "\n",
+ "#result\n",
+ "print \"For larger core fiber optical power emitted from the LED light source = \" , round(PLED_step*1e3,3),\"mW\"\n",
+ "print \"For smaller core fiber then area optical power coupled to step index fiber on W = \" , round(PLED_step1*1e3,3),\"mW\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "For larger core fiber optical power emitted from the LED light source = 0.725 mW\n",
+ "For smaller core fiber then area optical power coupled to step index fiber on W = 0.37 mW\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.3, Page Number: 194"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#variable declartion\n",
+ "n1 = 3.6 #refractive index of optical source\n",
+ "n = 1.48 #refractive index of silica fiber\n",
+ "\n",
+ "#calculation\n",
+ "R = ((n1-n)/(n1+n))**2 #fresnel reflection\n",
+ "L = -10*(math.log10(1-R)) #power loss(dB)\n",
+ "\n",
+ "#result\n",
+ "print\"Fresnel reflection = \",round(R,3),\" = \",round(R*100,1),\"%\"\n",
+ "print\"Power loss = \" , round(L,2),\"dB\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Fresnel reflection = 0.174 = 17.4 %\n",
+ "Power loss = 0.83 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.4, Page Number: 205"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#variable declartion\n",
+ "a =1*1e-6 #core radii (meters)\n",
+ "d = 0.3*a #axial offset\n",
+ "\n",
+ "#calculation\n",
+ "PT_P = (2/math.pi)*(math.acos(d/(2*a))-(1-(d/(2*a))**2)**0.5*(d/(6*a))*(5-0.5*(d/a)**2)) \n",
+ "PT_P_dB = 10*(math.log10(PT_P)) #power coupled between two fibers(dB)\n",
+ "\n",
+ "#result\n",
+ "print \"Power coupled between two graded index fibers = \" , round(PT_P_dB,2),\"dB\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Power coupled between two graded index fibers = -1.26 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.5, Page Number: 211"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#variable declartion\n",
+ "V = 2.4 #normalized frequency\n",
+ "n1 = 1.47 #core refractive index\n",
+ "n2 = 1.465 #cladding refractive index\n",
+ "a = (9.0/2.0)*10**-6 #core radii (meters)\n",
+ "d = 1*10**-6 #lateral offset (meters)\n",
+ "\n",
+ "#calculation\n",
+ "W = a*(0.65+1.619*V**(-1.5)+2.879*V**-6) #mode field diameter (um)\n",
+ "Lsm = -10*(math.log10(math.exp(-(d/W)**2))) #Loss between identical fibers(dB)\n",
+ "\n",
+ "#result\n",
+ "print \"Mode field diameter = \" , round(W*1e6,2),\"um\"\n",
+ "print \"Loss between single mode fibers due to lateral misalignment = \" , round(Lsm,2),\"dB\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Mode field diameter = 4.95 um\n",
+ "Loss between single mode fibers due to lateral misalignment = 0.18 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.6, Page Number: 212"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#variable declartion\n",
+ "V = 2.4 #normalized frequency\n",
+ "n1 = 1.47 #core refractive index\n",
+ "n2 = 1.465 #cladding refractive index\n",
+ "a = (9.0/2.0)*1e-6 #coreradii in meters\n",
+ "d = 1*1e-6 #lateral offset (m)\n",
+ "teta = 1 #in (degrees)\n",
+ "teta = 1/57.3 #in (radaians) \n",
+ "\n",
+ "#calculation\n",
+ "W = a*(0.65+1.619*V**(-1.5)+2.879*V**-6) #mode field diameter\n",
+ "Lam_bda = 1300.0*10**-9 #wavelength (m)\n",
+ "Lsm_ang = -10*(math.log10(math.exp(-(math.pi*n2*W*teta/Lam_bda)**2))) #(dB)\n",
+ "\n",
+ "#result\n",
+ "print \"Loss between single mode fibers due to angular misalignment = \",round(Lsm_ang,2),\"dB\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Loss between single mode fibers due to angular misalignment = 0.41 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |