diff options
Diffstat (limited to 'Optical_Communication_/Chapter_2.ipynb')
-rwxr-xr-x | Optical_Communication_/Chapter_2.ipynb | 1146 |
1 files changed, 0 insertions, 1146 deletions
diff --git a/Optical_Communication_/Chapter_2.ipynb b/Optical_Communication_/Chapter_2.ipynb deleted file mode 100755 index ddfaa1d5..00000000 --- a/Optical_Communication_/Chapter_2.ipynb +++ /dev/null @@ -1,1146 +0,0 @@ -{ - "metadata": { - "name": "", - "signature": "sha256:afd6588cf456d4d425f74443bb32014c9097e23d883f51c38473cadd2c6f5ba9" - }, - "nbformat": 3, - "nbformat_minor": 0, - "worksheets": [ - { - "cells": [ - { - "cell_type": "heading", - "level": 1, - "metadata": {}, - "source": [ - "Chapter 2: Optical Fibers" - ] - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.1, Page number 49" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''Determine maximum thickness of film'''\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1 = 3.5 #core refractive index\n", - "n2 = 3.0 #cladding refractive index\n", - "v = 6 #no. of modes\n", - "lamda = 1.5 #propagating wavelength(um)\n", - "\n", - "#Calculations\n", - "theta_c = math.degrees(math.asin(n2/n1))\n", - "h = (2*math.pi*v*lamda)/(2*math.pi*n1*math.cos(math.radians(theta_c)))\n", - "\n", - "#Result\n", - "print \"The thickness of the film should be less than\",round(h),\"um\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The thickness of the film should be less than 5.0 um\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.2, Page number 50" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''find the angle of acceptance and crtitical angle'''\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1 = 1.53 #core refractive index\n", - "n2 = 1.48 #cladding refractive index\n", - "n0 = 1 #refractive index for air\n", - "\n", - "#calculations\n", - "theta_a = math.degrees(math.asin(((n1**2-n2**2)**0.5)/n0)) \n", - "\n", - "theta_c = math.degrees(math.asin(n2/n1))\n", - "\n", - "#Result\n", - "print \"Angle of acceptance =\",round(theta_a,2),\"degrees\"\n", - "print \"Critical angle =\",round(theta_c,2),\"degrees\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Angle of acceptance = 22.83 degrees\n", - "Critical angle = 75.31 degrees\n" - ] - } - ], - "prompt_number": 2 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.3, Page number 50" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''Determine the numerical aperture'''\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "v = 26.6 #frequency(Hz)\n", - "lamda = 1.3 #propagating wavelength(um)\n", - "a = 25 #core radius(um)\n", - "\n", - "#Calculation\n", - "NA = (v*lamda)/(2*math.pi*a)\n", - "\n", - "#Result\n", - "print \"Numerical aperture =\",round(NA,2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Numerical aperture = 0.22\n" - ] - } - ], - "prompt_number": 3 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.4, Page number 51" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''Determine the numerical aperture'''\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1 = 1.4675 #core refractive index\n", - "n2 = 1.4622 #cladding refractive index\n", - "\n", - "#Calculation\n", - "NA = math.sqrt(n1**2-n2**2)\n", - "\n", - "#Result\n", - "print \"Numerical aperture =\",round(NA,3)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Numerical aperture = 0.125\n" - ] - } - ], - "prompt_number": 5 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.5, Page number 51" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''Determine cut-off wavelength for step index fiber'''\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1 = 1.5 #core refractive index\n", - "n2 = 1.47 #cladding refractive index\n", - "a = 4 #core radius(um)\n", - "\n", - "#Calculation\n", - "lamda_c = (2*math.pi*a*((n1**2-n2**2)**0.5))/2.405\n", - "\n", - "#Result\n", - "print \"The cut-off wavelength is\",round(lamda_c,2),\"um\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The cut-off wavelength is 3.12 um\n" - ] - } - ], - "prompt_number": 7 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.6, Page number 51" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''Determine maximum diameter of the core for single mode fiber'''\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1 = 1.55 #core refractive index\n", - "n2 = 1.48 #cladding refractive index\n", - "lamda = 1.55 #wavelength(um)\n", - "\n", - "#Calculations\n", - "a = (2.405*lamda)/(2*math.pi*(n1**2-n2**2)**0.5)\n", - "d = 2*a #diameter\n", - "\n", - "#Result\n", - "print \"Maximum diameter of the core is\",round(d,2),\"um\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Maximum diameter of the core is 2.58 um\n" - ] - } - ], - "prompt_number": 10 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.7, Page number 52" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''Determine the number of modes propagating'''\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1 = 1.48 #core refractive index\n", - "n2 = 0.01 #cladding refractive index\n", - "a = 25 #core radius(um)\n", - "lamda = 0.84 #Wavelength(um)\n", - "\n", - "#Calculation\n", - "m = 2*(2*math.pi/lamda)**2*(a**2/2)*(n1**2-n2**2)\n", - "v = math.sqrt(2*m)\n", - "\n", - "#Result\n", - "print \"Number of modes =\",v, \"(Calculation mistake in textbook while calculating 'm'. Hence, the answer differs)\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Number of modes = 391.074660134 (Calculation mistake in textbook while calculating 'm'. Hence, the answer differs)\n" - ] - } - ], - "prompt_number": 14 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.8, Page number 52" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''Determine the number of modes for multimode fiber and calculate the same when lamda is changed to 1.3um'''\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1 = 1.475 #core refractive index\n", - "n2 = 1.472 #cladding refractive index\n", - "a = 20 #core radius(um)\n", - "lamda = 0.85 #Wavelength(um)\n", - "\n", - "#Calculation\n", - "v = (2*math.pi*a*math.sqrt((n1**2-n2**2)))/lamda\n", - "M1 = v**2/2\n", - "\n", - "lamda2 = 1.3 #um\n", - "v2 = (2*math.pi*a*math.sqrt((n1**2-n2**2)))/lamda2\n", - "M2 = v2**2/2\n", - "\n", - "#Results\n", - "print \"Number of modes when lamda is changed =\",round(M1) #v is calculated wrongly in the book and answer for case a M not given\n", - "print \"Number of modes when lamda is changed =\",round(M2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Number of modes when lamda is changed = 97.0\n", - "Number of modes when lamda is changed = 41.0\n" - ] - } - ], - "prompt_number": 1 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.9, Page number 53" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''Determine the numerical aperture'''\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1 = 1.5 #core refractive index\n", - "n2 = 1.48 #cladding refractive index\n", - "\n", - "#Calculation\n", - "NA = math.sqrt(n1**2-n2**2)\n", - "\n", - "#Result\n", - "print \"Numerical aperture =\",round(NA,5)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Numerical aperture = 0.24413\n" - ] - } - ], - "prompt_number": 21 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.10, Page number 53" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''Determine core radius, NA and maximum acceptance angle'''\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1 = 1.450 #core refractive index\n", - "n2 = 1.447 #cladding refractive index\n", - "lamda = 1.3 #Wavelength(um)\n", - "\n", - "#Calculation\n", - "v = 2.405\n", - "a = (v*lamda)/(2*math.pi*math.sqrt((n1**2-n2**2)))\n", - "\n", - "NA = math.sqrt(n1**2-n2**2)\n", - "\n", - "theta_max = math.degrees(math.asin(NA))\n", - "\n", - "#Results\n", - "print \"Core radius =\",round(a,3),\"um\"\n", - "print \"Numerical aperture =\",round(NA,4)\n", - "print \"Maximum acceptance angle =\",round(theta_max,3),\"degrees\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Core radius = 5.338 um\n", - "Numerical aperture = 0.0932\n", - "Maximum acceptance angle = 5.349 degrees\n" - ] - } - ], - "prompt_number": 37 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.11, Page number 53" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''Determine critical angle at core cladding interface, NA and acceptance angle'''\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1 = 1.50 #core refractive index\n", - "n2 = 1.47 #cladding refractive index\n", - "\n", - "#calculations\n", - "theta_c = math.degrees(math.asin(n2/n1))\n", - "\n", - "NA = math.sqrt(n1**2-n2**2)\n", - "\n", - "theta_a = math.degrees(math.asin(NA))\n", - "\n", - "#Result\n", - "print \"Critical angle at core cladding interface =\",round(theta_c,1),\"degrees\"\n", - "print \"Numerical aperture =\",round(NA,2)\n", - "print \"Maximum acceptance angle =\",round(theta_a,1),\"degrees\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Critical angle at core cladding interface = 78.5 degrees\n", - "Numerical aperture = 0.3\n", - "Maximum acceptance angle = 17.4 degrees\n" - ] - } - ], - "prompt_number": 38 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.12, Page number 55" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''Determine the acceptance angle for skew rays'''\n", - "\n", - "#Variable declaration\n", - "NA = 0.4 #numerical aperture\n", - "#Since skew rays change direction by 100 degrees at each reflection,\n", - "r = 50 #degrees\n", - "\n", - "#Calculations\n", - "theta_as = math.degrees(math.asin(NA/math.cos(math.radians(r))))\n", - "\n", - "#print\n", - "print \"Acceptance angle =\",round(theta_as,1),\"degrees\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Acceptance angle = 38.5 degrees\n" - ] - } - ], - "prompt_number": 39 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.13, Page number 55" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''Determine normalized frequency and number of guided modes'''\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1 = 1.48 #core refractive index\n", - "lamda = 0.85 #wavelength(um)\n", - "a = 80/2 #core radius(um)\n", - "delta = 1.5/100 #relative index difference\n", - "\n", - "#Calculations\n", - "v = (2*math.pi*a*n1*(2*delta)**0.5)/lamda\n", - "\n", - "M = v**2/2\n", - "\n", - "#Results\n", - "print \"Normalized frequency =\",round(v,1),\"Hz\"\n", - "print \"Number of guided modes =\",round(M)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Normalized frequency = 75.8 Hz\n", - "Number of guided modes = 2872.0\n" - ] - } - ], - "prompt_number": 40 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.14, Page number 56" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''Determine cut off value for normalized frequency and maximum core radius'''\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1 = 1.5 #core refractive index\n", - "lamda = 1.3 #wavelength(um)\n", - "delta = 1./100. #relative index difference\n", - "alpha = 2\n", - "\n", - "#Calculations\n", - "v = 2.4*(1+2/alpha)**0.5\n", - "\n", - "a = (v*lamda)/(2*math.pi*n1*(2*delta)**0.5)\n", - "\n", - "#Results\n", - "print \"Cut off value for normalized frequency =\",round(v,2)\n", - "print \"Maximum core radius =\",round(a,2),\"um\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Cut off value for normalized frequency = 3.39\n", - "Maximum core radius = 3.31 um\n" - ] - } - ], - "prompt_number": 42 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.15, Page number 56" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''Determine cut-off wavelength for step index fiber'''\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1 = 1.46 #core refractive index\n", - "a = 4.5 #core radius(um)\n", - "delta = 0.25/100\n", - "\n", - "#Calculation\n", - "lamda_c = (2*math.pi*a*n1*(2*delta)**0.5)/2.405\n", - "\n", - "#Result\n", - "print \"The cut-off wavelength is\",round(lamda_c,3),\"um\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "The cut-off wavelength is 1.214 um\n" - ] - } - ], - "prompt_number": 43 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.16, Page number 57" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''Determine the numerical aperture and acceptance angle'''\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1 = 1.45 #core refractive index\n", - "n2 = 1.4 #cladding refractive index\n", - "\n", - "#Calculation\n", - "NA = math.sqrt(n1**2-n2**2)\n", - "\n", - "theta_m = math.degrees(math.asin(NA))\n", - "\n", - "#Result\n", - "print \"Numerical aperture =\",round(NA,4)\n", - "print \"Acceptance angle =\",round(theta_m,2),\"degrees\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Numerical aperture = 0.3775\n", - "Acceptance angle = 22.18 degrees\n" - ] - } - ], - "prompt_number": 44 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.17, Page number 57" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''Calculate cladding index, crtical internal reflection angle, external critical acceptance angle and numerical aperture'''\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1 = 1.5 #core refractive index\n", - "delta = 0.0005\n", - "\n", - "#Calculations\n", - "n2 = n1*(1-delta)\n", - "\n", - "theta_c = math.degrees(math.asin(n2/n1))\n", - "\n", - "n0 = 1 #refractive index for air\n", - "theta_m = math.degrees(math.asin(((n1**2-n2**2)**0.5)/n0))\n", - "\n", - "NA = n1*math.sqrt(2*delta)\n", - "\n", - "#Results\n", - "print \"Cladding index =\",round(n2,5)\n", - "print \"Crtical internal reflection angle =\",round(theta_c,1),\"degrees\"\n", - "print \"External critical acceptance angle =\",round(theta_m,2),\"Degrees\"\n", - "print \"Numerical aperture =\",round(NA,4)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Cladding index = 1.49925\n", - "Crtical internal reflection angle = 88.2 degrees\n", - "External critical acceptance angle = 2.72 Degrees\n", - "Numerical aperture = 0.0474\n" - ] - } - ], - "prompt_number": 46 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.18, Page number 58" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''Determine acceptance angle for fiber in water'''\n", - "\n", - "#Variable declaration\n", - "NA = 0.20 #numerical aperture\n", - "n2 = 1.59 #cladding refractive index\n", - "n0 = 1.33 #refractive index for water \n", - "\n", - "#Calculations\n", - "n1 = math.sqrt(NA**2+n2**2)\n", - "NA = math.sqrt(n1**2-n2**2)/n0\n", - "theta_m = math.degrees(math.asin(NA))\n", - "\n", - "#Result\n", - "print \"Acceptance angle for fiber in water =\",round(theta_m,1),\"degrees\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Acceptance angle for fiber in water = 8.6 degrees\n" - ] - } - ], - "prompt_number": 47 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.19, Page number 58" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''Determine the numerical aperture and acceptance angle'''\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1 = 1.55 #core refractive index\n", - "n2 = 1.51 #cladding refractive index\n", - "\n", - "#Calculation\n", - "delta = (n1-n2)/n1\n", - "NA = 2*math.sqrt(delta)\n", - "\n", - "theta_m = math.degrees(math.asin(NA))\n", - "\n", - "#Result\n", - "print \"Numerical aperture =\",round(NA,4)\n", - "print \"Acceptance angle =\",round(theta_m,2),\"degrees\"\n", - "print \"\\nCalculation mistakes in textbook. Hence, the answers differ.\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Numerical aperture = 0.3213\n", - "Acceptance angle = 18.74 degrees\n", - "\n", - "Calculation mistakes in textbook. Hence, the answers differ.\n" - ] - } - ], - "prompt_number": 49 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.20, Page number 59" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''Determine normalized frequency'''\n", - "\n", - "#Variable declaration\n", - "n = 1.45 #core refractive index\n", - "lamda = 0.1 #wavelength(um)\n", - "a = 60/2 #core radius(um)\n", - "NA = 0.16 #numerical aperture\n", - "\n", - "#Calculations\n", - "v = (2*math.pi*a*NA)/lamda\n", - "\n", - "#Results\n", - "print \"Normalized frequency =\",round(v,1),\"(Calculation mistake in textbook)\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Normalized frequency = 301.6 (Calculation mistake in textbook)\n" - ] - } - ], - "prompt_number": 50 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.21, Page number 59" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''Calculate NA and multi path dospersion per unit length'''\n", - "\n", - "#Variable declaration\n", - "c = 3.*10**8 #speed of light in vacuum(m/s)\n", - "v = 2.*10**8 #speed of light in core(m/s)\n", - "theta_c = 75 #cricial angle(degrees)\n", - "\n", - "#Calculations\n", - "n1 = c/v\n", - "n2 = n1*math.sin(math.radians(theta_c))\n", - "NA = math.sqrt(n1**2-n2**2)\n", - "\n", - "delta_n = n1-n2\n", - "md = (n1/n2)*(delta_n/c) #multipath dispersion\n", - "\n", - "#Results\n", - "print \"Numerical aperture =\",round(NA,2)\n", - "print \"Multi path dospersion per unit length =\",round((md/1E-9),3),\"*10^-9 s/m\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Numerical aperture = 0.39\n", - "Multi path dospersion per unit length = 0.176 *10^-9 s/m\n" - ] - } - ], - "prompt_number": 51 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.22, Page number 60" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''Determine maximum thickness of guide slab'''\n", - "\n", - "#Variable declaration\n", - "n1 = 3.6 #core refractive index\n", - "n2 = 3.56 #cladding refractive index\n", - "lamda = 0.85 #wavelength(um)\n", - "#For TE10 mode,\n", - "m = 1\n", - "n = 0\n", - "vc = 2.405 #for planar guide\n", - "\n", - "#Calculation\n", - "a = (vc*lamda)/(2*math.pi*math.sqrt(n1**2-n2**2))\n", - "\n", - "#Result\n", - "print \"Maximum thickness of guide slab =\",round(a,3),\"um\"\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Maximum thickness of guide slab = 0.608 um\n" - ] - } - ], - "prompt_number": 52 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.23, Page number 61" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''Calculate diameter of core'''\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1 = 1.5 #core refractive index\n", - "lamda = 1.3*10**-6 #wavelength(um)\n", - "delta = 1./100. #relative index difference\n", - "M = 1100\n", - "\n", - "#Calculations\n", - "V = math.sqrt(2*M)\n", - "\n", - "a = (V*lamda)/(2*math.pi*n1*(2*delta)**0.5)\n", - "\n", - "d = 2*a\n", - "\n", - "#Result\n", - "print \"Diameter =\",round(d/1E-5,2),\"um(Calculation mistake in textbook)\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Diameter = 9.15 um(Calculation mistake in textbook)\n" - ] - } - ], - "prompt_number": 6 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.24, Page number 62" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''Determine critical angle and numerical aperture'''\n", - "\n", - "\n", - "#Variable declaration\n", - "n1 = 1.50 #core refractive index\n", - "n2 = 1.46 #cladding refractive index\n", - "\n", - "#Calculation\n", - "theta_c = math.degrees(math.asin(n2/n1))\n", - "\n", - "NA = math.sqrt(n1**2-n2**2)\n", - "\n", - "#Result\n", - "print \"Critical angle =\",round(theta_c,2),\"degrees\"\n", - "print \"Numerical aperture =\",round(NA,2)" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Critical angle = 76.74 degrees\n", - "Numerical aperture = 0.34\n" - ] - } - ], - "prompt_number": 59 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.25, Page number 62" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''Determine the acceptance angle for skew rays'''\n", - "\n", - "#Variable declaration\n", - "NA = 0.344 #numerical aperture\n", - "#Since skew rays change direction by 100 degrees at each reflection,\n", - "gamma = 100/2 #degrees\n", - "\n", - "#Calculations\n", - "#For meridional rays\n", - "theta_a = math.degrees(math.asin(NA))\n", - "#For speed rays\n", - "theta_as = math.degrees(math.asin(NA/math.cos(math.radians(gamma))))\n", - "\n", - "#print\n", - "print \"Acceptance angle for meridional rays =\",round(theta_a,2),\"degrees\"\n", - "print \"Acceptance angle for speed rays =\",round(theta_as,2),\"degrees\"" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Acceptance angle for meridional rays = 20.12 degrees\n", - "Acceptance angle for speed rays = 32.36 degrees\n" - ] - } - ], - "prompt_number": 84 - }, - { - "cell_type": "heading", - "level": 2, - "metadata": {}, - "source": [ - "Example 2.26, Page number 62" - ] - }, - { - "cell_type": "code", - "collapsed": false, - "input": [ - "'''Calculate the no. of guided modes and cut-off value of normalized frequency'''\n", - "\n", - "import math\n", - "\n", - "#Variable declaration\n", - "n1 = 1.5 #core refractive index\n", - "lamda = 1.55 #wavelength(um)\n", - "delta = 1.3/100. #relative index difference\n", - "alpha = 1.90 #index profile\n", - "a = 40/2 #core radius(um)\n", - "\n", - "#Calculations\n", - "Mg = (alpha/(alpha+2))*((n1*2*math.pi*a)/lamda)**2*delta\n", - "\n", - "Vc = 2.405*math.sqrt(1+2/alpha)\n", - "\n", - "#Results\n", - "print \"Number of guided modes =\",round(Mg)\n", - "print \"Cut-off value of normalized frequency =\",round(Vc,2)\n" - ], - "language": "python", - "metadata": {}, - "outputs": [ - { - "output_type": "stream", - "stream": "stdout", - "text": [ - "Number of guided modes = 94.0\n", - "Cut-off value of normalized frequency = 3.45\n" - ] - } - ], - "prompt_number": 61 - } - ], - "metadata": {} - } - ] -}
\ No newline at end of file |