summaryrefslogtreecommitdiff
path: root/Operational_Amplifiers_and_Linear_Integrated_Circuit/C5_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Operational_Amplifiers_and_Linear_Integrated_Circuit/C5_1.ipynb')
-rw-r--r--Operational_Amplifiers_and_Linear_Integrated_Circuit/C5_1.ipynb733
1 files changed, 733 insertions, 0 deletions
diff --git a/Operational_Amplifiers_and_Linear_Integrated_Circuit/C5_1.ipynb b/Operational_Amplifiers_and_Linear_Integrated_Circuit/C5_1.ipynb
new file mode 100644
index 00000000..e04d327d
--- /dev/null
+++ b/Operational_Amplifiers_and_Linear_Integrated_Circuit/C5_1.ipynb
@@ -0,0 +1,733 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 5 :Selected applications of Op Amps"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.1 Page No 120"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "Ei = 0.5 #Input voltage\n",
+ "Ri = 1*10**3 #Input resistance in ohm\n",
+ "\n",
+ "#Calculation\n",
+ "Im = Ei / Ri #Meter Current\n",
+ "\n",
+ "#Result\n",
+ "print\"Meter Current = \", Im*1000,\"mA\" "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Meter Current = 0.5 mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.2 Page No 120"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "Efs = 5.0 #Full scale Voltage\n",
+ "Ifs = 50*10**-6 #Full scale Meter Current\n",
+ "#Calculation\n",
+ "Ri = Efs / Ifs # Input Resistance\n",
+ "\n",
+ "#Result\n",
+ "print\" Input Resistance =\", Ri/1000,\"Kohm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Input Resistance = 100.0 Kohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.3 Page No 122"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "Edc = 5.0\n",
+ "Erms = 5.0\n",
+ "Epeak = 5.0\n",
+ "Eptop = 5.0 # Voltages of meters \n",
+ "Ifs = 50*10**-6 # Full scale Meter Current\n",
+ "\n",
+ "#Calculation\n",
+ "Ri1 = Edc / Ifs # DC Voltmeter\n",
+ "Ri2 = 0.90 * (Erms / Ifs ) # Rms ac voltmeter ( math.sine wave only )\n",
+ "Ri3 = 0.636 * (Epeak / Ifs ) #Peak Reading Voltmeter ( math.sine wave only )\n",
+ "Ri4 = 0.318 * (Eptop / Ifs ) #Peak-to-Peak ac Voltmeter(math.sine wave only)\n",
+ "\n",
+ "#Result\n",
+ "print\" Ri1 \", Ri1/1000,\"kohm\"\n",
+ "print\" Ri2 =\",Ri2/1000 ,\"kohm\"\n",
+ "print\" Ri3 = \", Ri3/1000,\"kohm\"\n",
+ "print\" Ri4 = \", Ri4/1000,\"kohm\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Ri1 100.0 kohm\n",
+ " Ri2 = 90.0 kohm\n",
+ " Ri3 = 63.6 kohm\n",
+ " Ri4 = 31.8 kohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.4 Page No 123"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "Vo = 10.3 #Voltage across the load resistor\n",
+ "Ei = 5.0 #Input voltage\n",
+ "Ri = 1*10**3 #Input Resistance\n",
+ "\n",
+ "#calculation\n",
+ "I = Ei / Ri #Zener Current\n",
+ "Vt = Vo - Ei #Zener Voltage\n",
+ "\n",
+ "#Result\n",
+ "print\" Zener Current = \", I,\"A\"\n",
+ "print\" Zener Voltage = \", Vt ,\"V\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Zener Current = 0.005 A\n",
+ " Zener Voltage = 5.3 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.5 Page No 124"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "Ei = 1.0 #Reference voltage\n",
+ "Ri = 1*10**3 #Input Resistance\n",
+ "Vo = 0.6 #Outpur Voltage\n",
+ "\n",
+ "#Calculation\n",
+ "I = Ei / Ri #Diode Current\n",
+ "Vdiode = Vo \n",
+ "\n",
+ "#Result\n",
+ "print\" Diode Current = \", I*1000 ,\"mA\"\n",
+ "print\" Voltage drop across the diode = \", Vdiode,\"V\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Diode Current = 1.0 mA\n",
+ " Voltage drop across the diode = 0.6 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 4
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.6 Page No 127"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "R = 10*10**3 #Resistance\n",
+ "E2 = 0 #Source across negative terminal\n",
+ "Rl = 5*10**3 # Load Resistance\n",
+ "E1 = 5.0 # source across positive terminal\n",
+ "\n",
+ "#calculation\n",
+ "Il = (E1 - E2)/R #Load Current\n",
+ "Vl = Il * Rl # Voltage across Rl \n",
+ "Vo = (2*Vl)-E2 #Output voltage\n",
+ "\n",
+ "#Result\n",
+ "print\"(a) Load current across Rl = \" , Il*1000 ,\"mA\"\n",
+ "print\"(b) Voltage across load resistance = \" , Vl,\"V\"\n",
+ "print\"(c) Output Voltage = \", Vo ,\"V\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) Load current across Rl = 0.5 mA\n",
+ "(b) Voltage across load resistance = 2.5 V\n",
+ "(c) Output Voltage = 5.0 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.7 Page No 127"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "R = 10*10**3 #Resistance\n",
+ "E2 = 5.0 #Source across negative terminal\n",
+ "Rl = 5*10**3 # Load Resistance\n",
+ "E1 = 0 # source across positive terminal\n",
+ "\n",
+ "#Calculation\n",
+ "Il = (E1 - E2)/R #Load Current\n",
+ "Vl = Il * Rl # Voltage across Rl \n",
+ "Vo = (2*Vl)-E2 #Output voltage\n",
+ "\n",
+ "#Result\n",
+ "print\"(a) Load current across Rl = \" , Il*1000,\"mA\"\n",
+ "print\"(b) Voltage across load resistance = \" , Vl,\"V\"\n",
+ "print \"(c) Output Voltage = \", Vo ,\"V\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) Load current across Rl = -0.5 mA\n",
+ "(b) Voltage across load resistance = -2.5 V\n",
+ "(c) Output Voltage = -10.0 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.8 Page No 132"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "Vo = 5.0 #Output Voltage\n",
+ "Rf = 100*10**3 #Feedback Resistance\n",
+ "\n",
+ "#calculation\n",
+ "Isc = Vo / Rf #Short Circuit Current\n",
+ "\n",
+ "#Result\n",
+ "print\" Short Circuit Current = \" , Isc*10**6,\"microA\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Short Circuit Current = 50.0 microA\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.9 Page No 132"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given \n",
+ "Rf = 10*10**3 #Feedback Resistance\n",
+ "I = 10*10**-6 #Current through Photo Detector\n",
+ "\n",
+ "#calculation\n",
+ "Vo = Rf * I #Vo for Dark Condition\n",
+ "I1 = 1*10**-3 #Current in presence of sunlight\n",
+ "Vo1 = Rf * I1 #output voltage in light condition\n",
+ "\n",
+ "#Result\n",
+ "print\"(a)Output Voltage for dark Condition = \", Vo,\"V\"\n",
+ "print\"(b) Output voltage in light condition = \", Vo1,\"V\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a)Output Voltage for dark Condition = 0.1 V\n",
+ "(b) Output voltage in light condition = 10.0 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.10 Page No 133"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "Rf = 100*10**3 #Feedback Resistance\n",
+ "Il1 = 1*10**-6 #Load current 1\n",
+ "\n",
+ "#calculation\n",
+ "Vo1 = Rf * Il1 #Output voltage in photo detector\n",
+ "Il2 = 50*10**-6 # Load current 2\n",
+ "Vo2 = Rf * Il2 #Output Voltage in photo detector\n",
+ "\n",
+ "#Result\n",
+ "print\" (a)Output Voltage in photo detector for Il1 = \",Vo1 ,\"V\"\n",
+ "print \" (b)Output Voltage in photo detector for Il2 = \",Vo2 ,\"V\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " (a)Output Voltage in photo detector for Il1 = 0.1 V\n",
+ " (b)Output Voltage in photo detector for Il2 = 5.0 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.11 Page No 134"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "R = 1*10**3\n",
+ "R1 = 99*10**3 \n",
+ "\n",
+ "#calculation\n",
+ "m = R1 / R #multiplier\n",
+ "Isc = 10*10**-6 #Current on short-circuit condition\n",
+ "Il = (1 + m)*Isc \n",
+ "\n",
+ "#result\n",
+ "print\" Load current = \", Il*1000,\"mA\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Load current = 1.0 mA\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.12 Page No 136"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "Im = 100*10**-6 #Meter current \n",
+ "Isc = 0.5 # Current in short-circuit condition\n",
+ "Rf = 20 # Feedback resistance\n",
+ "Rm = 0.8*10**3 #Meter resistance\n",
+ "\n",
+ "#calculation\n",
+ "d = Isc / Im #Current divider\n",
+ "R1 = d * Rf \n",
+ "Rscale = R1 - Rm \n",
+ "\n",
+ "#Result\n",
+ "print\" Resistance dRf = \", R1/1000 ,\"kohm\"\n",
+ "print\" Rscale = \", Rscale/1000,\"kohm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Resistance dRf = 100.0 kohm\n",
+ " Rscale = 99.2 kohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.13 Page No 138"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "f = 10**3 #Frequency of Ei in Hz\n",
+ "Ci = 0.01*10**-6 \n",
+ "\n",
+ "#Calculation\n",
+ "import math\n",
+ "m = math.tan(math.pi/4)\n",
+ "Ri = m / (2*math.pi*f*Ci)\n",
+ "\n",
+ "#result\n",
+ "print\" Value of Ri = \",round(Ri/1000,1),\"kohm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Value of Ri = 15.9 kohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.14 Page No 138"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "f = 10**3 \n",
+ "Ri = 100*10**3 \n",
+ "Ci = 0.01*10**-6\n",
+ "\n",
+ "#calculation\n",
+ "import math\n",
+ "phaseangle = 2*math.atan(2*math.pi*f*Ri*Ci)\n",
+ "\n",
+ "#result\n",
+ "print\" Phase angle =\", round(phaseangle*180/3.14,2),\"degree\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Phase angle = 162.0 degree\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.15 Page no 143"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "#From fig 5-14(a) and b\n",
+ "Ei=2 #V, voltage\n",
+ "Vf=4 #Vf force\n",
+ "\n",
+ "#Calculation\n",
+ "Vo=-2*Ei #Vo forces\n",
+ "Vcap=3*Ei\n",
+ "\n",
+ "#Result\n",
+ "print\"Vo is\",Vo,\"V\"\n",
+ "print\"Vcap is\",Vcap,\"V\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Vo is -4 V\n",
+ "Vcap is 6 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.16 Page no 144"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "Ei=4 #V\n",
+ "Vo=8 #V\n",
+ "\n",
+ "#Calculation\n",
+ "Vr=-Vo\n",
+ "Vcap=Ei+Vo\n",
+ "\n",
+ "#Result\n",
+ "print\"Vcap is\",Vcap,\"V\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Vcap is 12 V\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.17 Page no 144"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#Given\n",
+ "Ri=1*10**5\n",
+ "C=10**-6\n",
+ "\n",
+ "#Calculation\n",
+ "T=3*Ri*C\n",
+ "Et=5*T\n",
+ "\n",
+ "#Result\n",
+ "print\"Equilibrium Time is\",Et,\"s\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Equilibrium Time is 1.5 s\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 3,
+ "metadata": {},
+ "source": [
+ "Example 5.18 Page no 146"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "#given\n",
+ "Ci=0.1*10**-6 #capacitance, farady\n",
+ "Ci_=0.1 #microF\n",
+ "f=1000 #frequency\n",
+ "#Calculation\n",
+ "import math\n",
+ "Ri=1/(2*math.pi*f*Ci)\n",
+ "Rf=20/(2*math.pi*f*Ci)\n",
+ "Cf=1/(2*math.pi*f*Rf)\n",
+ "#a=0.4*math.sin(2*math.pi*1000*t)\n",
+ "#Vo=-Cf*Ci*a\n",
+ "\n",
+ "from sympy import *\n",
+ "import numpy as np\n",
+ "t = Symbol('t')\n",
+ "y = -Rf*Ci_/10**6*0.4*sin(2*math.pi*1000*t)\n",
+ "y_ = y.diff(t)\n",
+ "\n",
+ "#Reslt\n",
+ "print Ci_\n",
+ "print\"a)Rf is \",round(Rf/1000,1),\"kohm\"\n",
+ "print\"Cf is \",round(Cf*10**6,9),\"microF\"\n",
+ "print\"(b)Output voltage is \",y_,\"V\"\n",
+ "\n",
+ "#NOTE: Answer is same .In the book it is written 2*math.pi*1000 ."
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "0.1\n",
+ "a)Rf is 31.8 kohm\n",
+ "Cf is 0.005 microF\n",
+ "(b)Output voltage is -8.0*cos(6283.18530717959*t) V\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file