diff options
Diffstat (limited to 'Non-conventional_Energy_Sources_by_G._D._Rai/Chapter6_1.ipynb')
-rwxr-xr-x | Non-conventional_Energy_Sources_by_G._D._Rai/Chapter6_1.ipynb | 95 |
1 files changed, 95 insertions, 0 deletions
diff --git a/Non-conventional_Energy_Sources_by_G._D._Rai/Chapter6_1.ipynb b/Non-conventional_Energy_Sources_by_G._D._Rai/Chapter6_1.ipynb new file mode 100755 index 00000000..698a5158 --- /dev/null +++ b/Non-conventional_Energy_Sources_by_G._D._Rai/Chapter6_1.ipynb @@ -0,0 +1,95 @@ +{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:fa4aed71f1066121dfd73577f913169c9d8ae9a618e0c3fdc846fc1c3ef047bd"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter6-Wind Energy"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 6.2.1-pg244"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "##Ex.6.2.1. \n",
+ "import math\n",
+ "##For air,the value of gas constant\n",
+ "R=0.287 ##unit=kj/kg K\n",
+ "##T=15. in degreecalcius\n",
+ "T=15.+273.;##in kalvin\n",
+ "RT=0.287*10**3*288.;\n",
+ "P=1.01325*10**5;##unit=Pa;at 1 atm\n",
+ "Vi=15.;##unit=m/s\n",
+ "gc=1.;\n",
+ "D=120.;##turbine diameter;unit=m\n",
+ "N=40./60.;\n",
+ "##Air density\n",
+ "p=(P/RT);\n",
+ "print'%s %.2f %s'%(\"Air density p=\",p,\" kg/M^3\");\n",
+ "##1] Total_power= Ptotal=p*A*Vi^3/2*gc\n",
+ "##power density =Ptotal/A=p*Vi^3/2*gc\n",
+ "power_density=(1./(2.*gc))*(p*Vi**3.);\n",
+ "##2] Maximum_power_density=Pmax/A=8*p*Vi^3/27*gc\n",
+ "Maximum_power_density=(8./(27.*gc))*(p*Vi**3);\n",
+ "print'%s %.2f %s %.2f %s '%(\"\\n power density =Ptotal/A= \",power_density,\" W/m^2\"and \" \\n Maximum power density=Pmax/A= \",Maximum_power_density,\" W/m^2\");\n",
+ "##3]Assuming n=35%\n",
+ "n=0.35;\n",
+ "##let P/A=x\n",
+ "x=n*(power_density);\n",
+ "print'%s %.2f %s'%(\"\\n P/A=\",x,\" W/m^2\");\n",
+ "##4]Total power P= power density * Area\n",
+ "Total_power_P=724.*(math.pi/4.)*(D**2) ##Total power P= power density*(%pi/4)*D^2\n",
+ "print'%s %.2f %s %.2f %s'%(\"\\n Total_power_P=\",Total_power_P,\" watt\"and \"=\",Total_power_P*10**-3,\" kW\")\n",
+ "##5]Torgue at maximum efficiency\n",
+ "Tmax=(2./(27.*gc))*((1.226*D*Vi*Vi*Vi)/N);##Tmax=(2/(27*gc))*((p*D*Vi*Vi*Vi)/N);\n",
+ "print'%s %.2f %s'%(\"\\n Torgue at maximum efficiency=\",Tmax,\" Newton\")\n",
+ "##and maximum axial thurst\n",
+ "Fxmax=(3.14/(9.*gc))*1.226*D**2.*Vi**2.;##Fxmax=(%pi/(9*gc))*p*D^2*Vi^2;\n",
+ "print'%s %.2f %s'%(\"\\n maximum axial thurst=\",Fxmax,\" Newton\");\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Air density p= 1.23 kg/M^3\n",
+ "\n",
+ " power density =Ptotal/A= 2068.65 \n",
+ " Maximum power density=Pmax/A= 1225.86 W/m^2 \n",
+ "\n",
+ " P/A= 724.03 W/m^2\n",
+ "\n",
+ " Total_power_P= 8188247.09 = 8188.25 kW\n",
+ "\n",
+ " Torgue at maximum efficiency= 55170.00 Newton\n",
+ "\n",
+ " maximum axial thurst= 1385870.40 Newton\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+}
\ No newline at end of file |