summaryrefslogtreecommitdiff
path: root/Microwave_and_Radar_Engineering/Chapter_10.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Microwave_and_Radar_Engineering/Chapter_10.ipynb')
-rw-r--r--Microwave_and_Radar_Engineering/Chapter_10.ipynb581
1 files changed, 581 insertions, 0 deletions
diff --git a/Microwave_and_Radar_Engineering/Chapter_10.ipynb b/Microwave_and_Radar_Engineering/Chapter_10.ipynb
new file mode 100644
index 00000000..e8ab31f7
--- /dev/null
+++ b/Microwave_and_Radar_Engineering/Chapter_10.ipynb
@@ -0,0 +1,581 @@
+{
+ "metadata": {
+ "name": "Chapter 10"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 10: Microwave Communication Systems"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.1, Page number 486"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Find the maximum distance through which the TV signal could be received by space popagation and \n",
+ "the raio horizon'''\n",
+ "\n",
+ "from math import sqrt\n",
+ "\n",
+ "#Variable declaration\n",
+ "ht = 144 #transmitter antenna height(m)\n",
+ "hr = 25 #receiving antenna height(M)\n",
+ "\n",
+ "#Calculations\n",
+ "dt = 4*sqrt(ht)\n",
+ "dr = 4*sqrt(hr)\n",
+ "d = dt+dr\n",
+ "\n",
+ "#Results\n",
+ "print \"Radio horizon is\",dt,\"km\"\n",
+ "print \"The maximum distance of propagation of the TV signal is\",d,\"km\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Radio horizon is 48.0 km\n",
+ "The maximum distance of propagation of the TV signal is 68.0 km\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.2, Page number 486"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Calculate the value of the factor by which the horizon distance of the transmitter can be modified'''\n",
+ "\n",
+ "from fractions import Fraction\n",
+ "\n",
+ "#Variable declaration\n",
+ "r = 6370*10**3 #radius of earth(km)\n",
+ "du_dh = -0.05*10**-6 #refractive index of air near ground\n",
+ "\n",
+ "#Calculations\n",
+ "k = 1/(1+(r*du_dh))\n",
+ "\n",
+ "#Result\n",
+ "print \"The horizon distance of the transmitter can be modified by replaing r by r' is\",round(k,3),\"r\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The horizon distance of the transmitter can be modified by replaing r by r' is 1.467 r\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.3, Page number 487"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Calculate the carrier transmitter power required'''\n",
+ "\n",
+ "import math \n",
+ "#Variable declaration\n",
+ "c = 3.*10**8 #velocity of propagation(m/s)\n",
+ "f = 2*10**9 #frequency(Hz)\n",
+ "r = 50*10**3 #repeater spacing(km)\n",
+ "Pr = 20 #carrier power(dBm)\n",
+ "Gt = 34 #antenna gain(dB)\n",
+ "L = 10 #dB\n",
+ "Gr = 34 #dB\n",
+ "\n",
+ "#Calculations\n",
+ "lamda = c/f\n",
+ "Pt = -Pr+(10*math.log10(4*math.pi*r**2))-Gt-(10*math.log10(lamda**2/(4*math.pi)))+L-Gr\n",
+ "\n",
+ "#Results\n",
+ "print \"The carrier tansmitted power required is\",round(Pt,2),\"dBm\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The carrier tansmitted power required is 54.44 dBm\n"
+ ]
+ }
+ ],
+ "prompt_number": 25
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Exampl 10.4, Page number 487"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Calculate the received power at input of satellite receiver'''\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "f = 6.*10**9 #uplink frequency(Hz)\n",
+ "e = 5 #elevation angle(degrees)\n",
+ "Pt = 1.*10**3 #transmitter power(W)\n",
+ "Gt = 60. #gain of transmitter(dB)\n",
+ "Gr = 0 #gain of receiver(dB)\n",
+ "d = 36000*10**3 #distance between ground and satellite(m)\n",
+ "c = 3.*10**8 #velocity of propagation(m/s)\n",
+ "\n",
+ "#Calculation\n",
+ "Gt1 = 10**(Gt/10)\n",
+ "Gr1 = 10.**(Gr/10)\n",
+ "r = d/(math.sin(math.radians(e)))\n",
+ "lamda = c/f\n",
+ "Pr = (Pt*Gt1*Gr1*lamda**2)/(4*math.pi*r**2*4*math.pi)\n",
+ "\n",
+ "#Result\n",
+ "print \"Received power =\",round((Pr/1E-14),1),\"*10^-14 W\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Received power = 9.3 *10^-14 W\n"
+ ]
+ }
+ ],
+ "prompt_number": 41
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.5, Page number 487"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Calculate the antenna beam angle'''\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "r = 6371 #radius of the earth(km)\n",
+ "\n",
+ "#Calculation\n",
+ "d = 35855+r #distance of satellite from center of the earth(km)\n",
+ "b = (math.degrees(math.pi)*r)/d\n",
+ "\n",
+ "#Result\n",
+ "print \"Antenna beam angle =\",round(b,2),\"degrees\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Antenna beam angle = 27.16 degrees\n"
+ ]
+ }
+ ],
+ "prompt_number": 47
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.6, Page number 488"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Calculate the round trip time between earth station and satellite. Find the same for vertical transmission'''\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "r = 6371 #radius of earth(km)\n",
+ "h = 35855 #height(km) \n",
+ "phi = 5 #elevation angle(degrees)\n",
+ "c = 3*10**8 #velocity of propagation(m/s)\n",
+ "B = 90 #angle for vertical transmission(degrees)\n",
+ "\n",
+ "#Calculations\n",
+ "d = math.sqrt(((r+h)**2)-((r*math.cos(math.radians(phi)))**2))- (r*math.sin(math.radians(phi)))\n",
+ "T = (2*d*10**3)/c\n",
+ "dv = math.sqrt(((r+h)**2)-(r**2))\n",
+ "Tv = (2*(dv-r)*10**3)/c\n",
+ "\n",
+ "#Results\n",
+ "print \"The round trip time between earth station and satellite is\",round((T/1E-3),2),\"msec\"\n",
+ "print \"The round trip time for vertical transmission is\",round((Tv/1E-3),2),\"msec\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The round trip time between earth station and satellite is 274.61 msec\n",
+ "The round trip time for vertical transmission is 235.81 msec\n"
+ ]
+ }
+ ],
+ "prompt_number": 53
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.7, Page number 488"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Calculate the figure of merit for an earth station'''\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Tant = 25 #effective noise temperature for antenna(K)\n",
+ "Tr = 75 #receiver oise temperature(K)\n",
+ "G = 45 #power gain(dB)\n",
+ "\n",
+ "#Calculations\n",
+ "T = Tant+Tr\n",
+ "Tdb = 10*math.log10(T)\n",
+ "M = G - Tdb\n",
+ "\n",
+ "#Results\n",
+ "print \"The figure of merit for earth station is\",M,\"dB\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The figure of merit for earth station is 25.0 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.8, Page number 488"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Determine carrier to noise ratio'''\n",
+ "\n",
+ "#Variable declaration\n",
+ "EIRP = 55.5 #satellite ESM(dBW)\n",
+ "M = 35 #freespace loss(dB)\n",
+ "Lfs = 245.3 #GT of earth station(dB)\n",
+ "\n",
+ "#Calculation\n",
+ "C_No = EIRP + M - Lfs + 228.6\n",
+ "\n",
+ "#Result\n",
+ "print \"The carrier to noise ratio is\",round(C_No,2),\"dB\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The carrier to noise ratio is 73.8 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.9, Page number 489"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Calculate the system noise temperature'''\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "D = 30 #diameter of dish(m)\n",
+ "f = 4*10**9 #downlink frequency(Hz)\n",
+ "M = 20 #G/T ratio of earth station\n",
+ "c = 3.*10**8 #velocity of propagation(m/s)\n",
+ "\n",
+ "#Calculations\n",
+ "Ae = (math.pi*D**2)/4\n",
+ "lamda = c/f\n",
+ "G = (4*math.pi*Ae)/lamda**2\n",
+ "Gdb = 10*math.log10(G)\n",
+ "Ts = Gdb - M\n",
+ "\n",
+ "#Result\n",
+ "print \"The system noise temperature is\",round(Ts,2),\"dB\" "
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The system noise temperature is 41.98 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.10, Page number 489"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "''' Find the diameter & half power beam width of paraboic antenna'''\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "Gp = 1500 #power gain\n",
+ "lamda = 10*10**-2 #m\n",
+ "\n",
+ "#Calculations\n",
+ "D = math.sqrt((Gp*(lamda**2))/(math.pi**2))\n",
+ "HPBW = 58*lamda/D\n",
+ "\n",
+ "#Results\n",
+ "print \"The diamater of parabolic antenna is\",round(D,2),\"m\"\n",
+ "print \"Half power beam width of paraboic antenna =\",round(HPBW,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "15791.3670417\n",
+ "The diamater of parabolic antenna is 1.23 m\n",
+ "Half power beam width of paraboic antenna = 4.7\n"
+ ]
+ }
+ ],
+ "prompt_number": 37
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.11, Page number 490"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Calculate overall gain of the system'''\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "'''Let Gp1 be the gain and d1 be the diameter of the parabolic reflectors in the original system\n",
+ "then Gp1 = (6*D1**2)/(lamda**2)\n",
+ "If the gain and diameter of the antenna in the modified system is Gp2 and d2,\n",
+ "then Gp2 = (6*D2**2)/(lamda**2)\n",
+ "Gain = 10*log(Gp2/Gp1)\n",
+ "Substituting D2=2D1 in Gp2, we get,'''\n",
+ "\n",
+ "#Calculations\n",
+ "G = 10*math.log10(2)\n",
+ "Gall = 2*G\n",
+ "\n",
+ "#Results\n",
+ "print \"Overall gain of the system is\",round(Gall,2),\"dB\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Overall gain of the system is 6.02 dB\n"
+ ]
+ }
+ ],
+ "prompt_number": 45
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Esample 10.12, Page number 490"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Calculate -\n",
+ "a)beamwidth between first nulls\n",
+ "b)beamwidth between half power points\n",
+ "c)gain of antenna'''\n",
+ "\n",
+ "#Variable declaration\n",
+ "D = 3*10**2 #diameter of paraboloid(cm)\n",
+ "f = 3.*10**9 #frequency(Hz)\n",
+ "c = 3.*10**10 #velocity of propagation(m/s)\n",
+ "\n",
+ "#Calculations\n",
+ "lamda = c/f\n",
+ "BWFN = (140*lamda)/D\n",
+ "BWHP = (70*lamda)/D\n",
+ "Gp = (6*D**2)/(lamda**2)\n",
+ "\n",
+ "#Results\n",
+ "print \"Beamwidth between first nulls =\",round(BWFN,2),\"degrees\"\n",
+ "print \"Beamwidth between half power points =\",round(BWHP,2),\"degrees\"\n",
+ "print \"Gain of antenna =\",round(Gp,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Beamwidth between first nulls = 4.67 degrees\n",
+ "Beamwidth between half power points = 2.33 degrees\n",
+ "Gain of antenna = 5400.0\n"
+ ]
+ }
+ ],
+ "prompt_number": 51
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 10.13, Page number 490"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "'''Calculate power gain of optimum horn antenna'''\n",
+ "\n",
+ "#Variable declaration\n",
+ "'''A = 5*lamda #square aperture of a side dimension\n",
+ "Gp = 4.5* A^2/lamda^2'''\n",
+ "A = 5\n",
+ "\n",
+ "#Calculation\n",
+ "Gp = 4.5*A**2\n",
+ "\n",
+ "#Result\n",
+ "print \"Power gain of optimum horn antenna =\",Gp\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Power gain of optimum horn antenna = 112.5\n"
+ ]
+ }
+ ],
+ "prompt_number": 53
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file