summaryrefslogtreecommitdiff
path: root/Mechanics_of_Materials_by_Pytel_and_Kiusalaas/Chapter12_2.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Mechanics_of_Materials_by_Pytel_and_Kiusalaas/Chapter12_2.ipynb')
-rwxr-xr-xMechanics_of_Materials_by_Pytel_and_Kiusalaas/Chapter12_2.ipynb319
1 files changed, 319 insertions, 0 deletions
diff --git a/Mechanics_of_Materials_by_Pytel_and_Kiusalaas/Chapter12_2.ipynb b/Mechanics_of_Materials_by_Pytel_and_Kiusalaas/Chapter12_2.ipynb
new file mode 100755
index 00000000..9163c9cf
--- /dev/null
+++ b/Mechanics_of_Materials_by_Pytel_and_Kiusalaas/Chapter12_2.ipynb
@@ -0,0 +1,319 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:d8a1a6f05cd4df2c46b4f5147d4f831726de5041386c1f65ed2892779a5fb0fb"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 12:Special Topics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.12.1, Page No:422"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable Decleration\n",
+ "W=24*10**3 #Load in kips\n",
+ "E=29*10**6 #Youngs Modulus in psi\n",
+ "L=72 #length in inches\n",
+ "theta=30 #Angle in degrees\n",
+ "\n",
+ "#Calculations\n",
+ "L_ab=L/np.sin(theta*pi*180**-1) #Length of AB in inches\n",
+ "L_ac=L/np.sin((90-theta)*pi*180**-1) #Length of AC in inches\n",
+ "\n",
+ "#Applying the forces in x and y sum to zero\n",
+ "#Applying the Starin energy formula\n",
+ "#Applying Castiglinos theorem \n",
+ "delta_A=91.16*W*E**-1 #Displacement in inches\n",
+ "\n",
+ "#Result\n",
+ "print \"The displacement of point A is\",round(delta_A,4),\"in\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The displacement of point A is 0.0754 in\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.12.3, Page No:423"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from scipy.integrate import quad\n",
+ "\n",
+ "\n",
+ "\n",
+ "#We will directly compute the integral as function cannot be declared\n",
+ "#Calculations\n",
+ "#Part 1\n",
+ "def integrand(x):\n",
+ " return (800*x-400*x**2)*(4-0.5*x)\n",
+ "I = quad(integrand, 0, 2)\n",
+ "delta=I[0] #Deflection in horizontal direction in N.m^3\n",
+ "\n",
+ "#Part 2\n",
+ "def inte1(x):\n",
+ " return x**2\n",
+ "I1=quad(inte1,0,4)\n",
+ "I2=quad(inte1,0,3)\n",
+ "def inte2(x):\n",
+ " return (4-0.5*x)*(4-0.5*x)\n",
+ "I3=quad(inte2,0,2)\n",
+ "\n",
+ "Q=-delta/(I1[0]+I2[0]+I3[0]) #Horizontal reaction in N\n",
+ "\n",
+ "\n",
+ "#Result\n",
+ "print \"The Horizontal deflection is\",round(delta),\"N.m^3\"\n",
+ "print \"The Horizontal reaction is\",round(Q,1),\"N\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Horizontal deflection is 1867.0 N.m^3\n",
+ "The Horizontal reaction is -33.9 N\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.12.4, Page No:433"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#NOTE:The figure mentions the unit of length as ft which is incorrect\n",
+ "#Variable Decleration\n",
+ "L=30 #Length in m\n",
+ "m=2000 #Mass in kg\n",
+ "v=2 #Velocity in m/s\n",
+ "E=10**5 #Youngs Modulus in MPa\n",
+ "A=600 #Area in mm^2\n",
+ "g=9.81 #Acceleration due to gravity in m/s^2\n",
+ "\n",
+ "#Calculations\n",
+ "k=E*A*L**-1 #Stifness of the cable in N/m\n",
+ "\n",
+ "#Applying the Work-Energy principle \n",
+ "delta_max=np.sqrt((0.5*m*v**2)*(0.5*k)**-1) #Maximum Displacement in m\n",
+ "\n",
+ "P_max=k*delta_max+m*g #Maximum force in N\n",
+ "\n",
+ "#Result\n",
+ "print \"The maximum force is\",round(P_max*10**-3,1),\"kN\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum force is 146.1 kN\n"
+ ]
+ }
+ ],
+ "prompt_number": 51
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.12.5, Page No:434"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable Decleration\n",
+ "b=0.060 #Breadth of the section in mm\n",
+ "d=0.03 #Depth of the section in mm\n",
+ "L=1.2 #Length in m\n",
+ "m=80 #Mass in kg\n",
+ "g=9.81 #Acceleration due to gravity in m/s^2\n",
+ "E=200*10**9 #Youngs Modulus in Pa\n",
+ "e=0.015 \n",
+ "h=0.01 #height in m\n",
+ "\n",
+ "#Calculations\n",
+ "#Part 1\n",
+ "I=b*d**3*12**-1 #Moment of Inertia in m^4\n",
+ "delta_st=m*g*L**3/(48*E*I) #Mid-span Displacement in m\n",
+ "n=1+np.sqrt(1+(2*h/delta_st)) #Impact Factor\n",
+ "\n",
+ "#Part 2\n",
+ "P_max=n*m*g #Maximum dynamic load in N at midspan\n",
+ "M_max=P_max*0.5*L*0.5 #Maximum moment in N.m\n",
+ "sigma_max=M_max*e/I #Maximum dynamic Bending Stress in Pa\n",
+ "\n",
+ "#Result\n",
+ "print \"The impact factor is\",round(n,3)\n",
+ "print \"The maximum dynamic Bending Moment is\",round(sigma_max*10**-6,1),\"MPa\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The impact factor is 5.485\n",
+ "The maximum dynamic Bending Moment is 143.5 MPa\n"
+ ]
+ }
+ ],
+ "prompt_number": 65
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.12.7, Page No:440"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable decleration\n",
+ "M=2.21 #Applied moment in kip.ft\n",
+ "d=3 #Diameter of the bar in inches\n",
+ "sigma_y=40 #Yield strength of the of steel in ksi\n",
+ "\n",
+ "#Calculations\n",
+ "#Part 1\n",
+ "sigma=32*M*12*(pi*d**3)**-1 #Maximum Bending Stress in ksi\n",
+ "T1=np.sqrt((sigma_y*0.5)**2-5**2)/(12*0.18863) #Maximum Allowable torque in kip.ft\n",
+ "\n",
+ "#Part 2\n",
+ "R=np.sqrt((sigma_y**2-5**2)*3**-1) #Maximum shear stress in ksi\n",
+ "T2=np.sqrt(R**2-5**2)/(12*0.18863) #Maximum safe torque in kpi.ft\n",
+ "\n",
+ "#Result\n",
+ "print \"Using the maximum shear stress theory T=\",round(T1,2),\"kip.ft\"\n",
+ "print \"Using the maximum sitrotion energy theory T=\",round(T2,2),\"kip.ft\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Using the maximum shear stress theory T= 8.56 kip.ft\n",
+ "Using the maximum sitrotion energy theory T= 9.88 kip.ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 79
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 12.12.8, Page No:448"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable Decleration\n",
+ "D=250 #Wideness in mm\n",
+ "b=20 #Thickness of the plate in mm\n",
+ "r=50 #Radius of the hole in mm\n",
+ "e=50 #Eccentricity in mm\n",
+ "sigma_max=150 #Maximum normal stress at the hole in MPa\n",
+ "kb=2 #Stress Concentraion factor \n",
+ "\n",
+ "#Calculations\n",
+ "A=b*(D-2*r)*10**-6 #Area in m^2\n",
+ "I=10**-12*(b*D**3*12**-1-(b*2**3*r**3*12**-1)) #Moment of inertia in m^4\n",
+ "#Simplfying computation\n",
+ "a=2*r*D**-1\n",
+ "kt=3-3.13*a+3.66*a**2-1.53*a**3 #Stress Concentration factor\n",
+ "#Simplfying computation\n",
+ "b=kt*A**-1\n",
+ "c=kb*r*r*10**-6*I**-1\n",
+ "P=10**3*sigma_max*(b+c)**-1 #Maximum Load in N\n",
+ "\n",
+ "#Result\n",
+ "print \"The maximum value of P is\",round(P,1),\"kN\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum value of P is 157.8 kN\n"
+ ]
+ }
+ ],
+ "prompt_number": 106
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file