summaryrefslogtreecommitdiff
path: root/Mechanics_of_Materials_by_Pytel_and_Kiusalaas/Chapter11_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Mechanics_of_Materials_by_Pytel_and_Kiusalaas/Chapter11_1.ipynb')
-rwxr-xr-xMechanics_of_Materials_by_Pytel_and_Kiusalaas/Chapter11_1.ipynb293
1 files changed, 293 insertions, 0 deletions
diff --git a/Mechanics_of_Materials_by_Pytel_and_Kiusalaas/Chapter11_1.ipynb b/Mechanics_of_Materials_by_Pytel_and_Kiusalaas/Chapter11_1.ipynb
new file mode 100755
index 00000000..bf1270ca
--- /dev/null
+++ b/Mechanics_of_Materials_by_Pytel_and_Kiusalaas/Chapter11_1.ipynb
@@ -0,0 +1,293 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:9e6efed33049beac69942b90d39a9e8444a663ad0d711d98275d388c059ec74c"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter11:Additional Beam Topics"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.11.1, Page No:394"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable Decleration\n",
+ "V=1000 #Force acting on he section in lb\n",
+ "t=0.5 #Thickness in inches\n",
+ "#Dimensions\n",
+ "d=8 #Depth of the section in inches\n",
+ "wf=12 #Width of the flange in inches\n",
+ "wbf=8 #Width of the bottom flange in inches\n",
+ "\n",
+ "#Calculations\n",
+ "y_bar=((d*t*0)+wbf*t*4+wf*t*8)/(d*t+wbf*t+wf*t) #Location of Neutral Axis in inches\n",
+ "I=d*t*y_bar**2+t*d**3*12**-1+d*t*(d*t-y_bar)**2+wf*t*(8-y_bar)**2 #Moment of Inertia in in^4\n",
+ "\n",
+ "#Top Flange\n",
+ "q1=V*t*t*wf*(8-y_bar)*I**-1 #Shear flow in lb/in\n",
+ "#Bottom Flange\n",
+ "q2=V*t*t*d*y_bar*I**-1 #Shear Flow in lb/in\n",
+ "#Web\n",
+ "qB=2*q1 #Shear Flow in lb/in\n",
+ "qF=2*q2 #Shear Flow in lb/in\n",
+ "\n",
+ "#Max Shear Flow\n",
+ "qMAX=qB+V*t*(8-y_bar)**2*0.5*I**-1 #Maximum Shear Flow in lb/in\n",
+ "\n",
+ "#Result\n",
+ "print \"The Maximum Shear Flow is\",round(qMAX),\"lb/in\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Maximum Shear Flow is 133.0 lb/in\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.11.2, Page No:395"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable Decleration\n",
+ "V=1000 #Shear Force in lb\n",
+ "#Rest ALL DATA is similar to previous problem\n",
+ "\n",
+ "#Calcualtions\n",
+ "I=t*wf**3*12**-1+t*d**3*12**-1 #Moment of Inertia\n",
+ "\n",
+ "#Part 1\n",
+ "q1=V*t*t*wf*3*I**-1 #Shear Flow in lb/in\n",
+ "q2=V*t*t*d*2*I**-1 #Shear FLow in lb/in\n",
+ "V1=2*3**-1*q1*wf #Shear force carried in lb\n",
+ "V2=2*3**-1*q2*d #Shear force carried in lb\n",
+ "\n",
+ "#Part 2\n",
+ "e=8*V2*V**-1 #Eccentricity in inches\n",
+ "\n",
+ "#Result\n",
+ "print \"The Shear Force carried by Flanges is\"\n",
+ "print \"Top Flange=\",round(V1,1),\"lb Bottom Flange=\",round(V2,1),\"lb\"\n",
+ "print \"The eccentricity is\",round(e,3),\"in\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The Shear Force carried by Flanges is\n",
+ "Top Flange= 771.4 lb Bottom Flange= 228.6 lb\n",
+ "The eccentricity is 1.829 in\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.11.3, Page No:403"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "import numpy as np\n",
+ "\n",
+ "#Variable Decleration\n",
+ "M=32 #Moment in kN.m\n",
+ "Iy=4.73*10**6 #Moment of inertia in y-axis in mm^4\n",
+ "Iz=48.9*10**6 #Moment of inertia in z-axis in mm^4\n",
+ "Sy=64.7*10**3 #Sectional Modulus in y-axis in mm^3\n",
+ "Sz=379*10**3 #Sectional Modulus in z-axis in mm^3\n",
+ "theta=16.2 #Angle between moment and z-axis in degrees\n",
+ "\n",
+ "#Calculations\n",
+ "#Part 1\n",
+ "alpha=np.arctan((Iz*Iy**-1)*tan(theta*pi*180**-1))*180*pi**-1 #Angle between NA and z-axis in degrees\n",
+ "\n",
+ "#Part 2\n",
+ "My=-M*np.sin(theta*pi*180**-1) #Bending Moment in y in kN.m\n",
+ "Mz=-M*np.cos(theta*pi*180**-1) #Bending Moment in z in kN.m\n",
+ "\n",
+ "sigma_max=My*Sy**-1+Mz*Sz**-1 #Largest Bedning Stress in MPa\n",
+ "\n",
+ "#Result\n",
+ "print \"The angle between the Neutral Axis and Z-Axis is\",round(alpha,1),\"degrees\"\n",
+ "print \"The maximum Bending Moment is\",abs(round(sigma_max*10**6)),\"MPa\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The angle between the Neutral Axis and Z-Axis is 71.6 degrees\n",
+ "The maximum Bending Moment is 219.0 MPa\n"
+ ]
+ }
+ ],
+ "prompt_number": 24
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.11.4, Page No:403"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable Decleration\n",
+ "A=4.75 #Area in inches^2\n",
+ "Iy_dash=6.27 #Moment of inertia in in^4\n",
+ "Iz_dash=17.4 #Moment of inertia in in^4\n",
+ "ry=0.87 #Radius of Gyration in inches\n",
+ "tan_theta=0.44\n",
+ "P=1 #Force in kips\n",
+ "L=48 #Length in inches\n",
+ "y_dash_B=-4.01 #Y coordinate of point B in inches\n",
+ "z_dash_B=-0.487 #Z coordinate of point B in inches\n",
+ "\n",
+ "#Calcualtions\n",
+ "theta=np.arctan(tan_theta) #Angle in radians\n",
+ "Iy=A*ry**2 #Moment of inertia in y in in^4\n",
+ "Iz=Iy_dash+Iz_dash-Iy #Moment of inertia in y in in^4\n",
+ "\n",
+ "#Part 1\n",
+ "alpha=arctan(Iz*Iy**-1*tan_theta)*180*pi**-1 #Angle in radians\n",
+ "beta=alpha-(theta*180*pi**-1) #Angle in degrees\n",
+ "\n",
+ "#Part 2\n",
+ "M=P*L*4**-1 #Moment in kip.in\n",
+ "My=M*np.sin(theta) #Moment in y in kip.in\n",
+ "Mz=M*np.cos(theta) #Moment in z in kip.in\n",
+ "\n",
+ "y_B=y_dash_B*np.cos(theta)+z_dash_B*np.sin(theta) #Y coordinate in inches\n",
+ "z_B=z_dash_B*np.cos(theta)-y_dash_B*np.sin(theta) #Z coordinate in inches\n",
+ "\n",
+ "#Maximum Bending Stress\n",
+ "sigma_max=My*z_B*Iy**-1-Mz*y_B*Iz**-1 #Maximum Bedning Stress in ksi\n",
+ "\n",
+ "#Result\n",
+ "print \"The angle of inclination of the Neutral axis to the z-axis is\",round(beta,1),\"degrees\"\n",
+ "print \"The maximum Bedning Stress is\",round(sigma_max,2),\"ksi\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The angle of inclination of the Neutral axis to the z-axis is 44.1 degrees\n",
+ "The maximum Bedning Stress is 3.69 ksi\n"
+ ]
+ }
+ ],
+ "prompt_number": 45
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 11.11.5, Page No:412"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "\n",
+ "#Variable Decleration\n",
+ "A1=4 #Area in in^2\n",
+ "A2=6 #Area in in^2\n",
+ "r1=7.8 #Radius in inches\n",
+ "r2=14.8 #Radius in inches\n",
+ "t=0.5 #Thickness in inches\n",
+ "d=4 #Depth in inches\n",
+ "sigma_w=18 #Maximum allowable stress in kips\n",
+ "\n",
+ "#Calculations\n",
+ "A=A1+A2 #Area in in^2\n",
+ "r_bar=(A1*(r1+t)+A2*(r2+d))*(A1+A2)**-1 #Centroidal Axis in inches\n",
+ "#Simplfying the computation\n",
+ "a=(r1+2*t)/r1\n",
+ "b=r2/(r1+t*2)\n",
+ "integral=d*math.log(a)+2*t*math.log(b) #\n",
+ "R=A/integral #Radius of neutral Surface in inches\n",
+ "\n",
+ "#Maximum Stress\n",
+ "#Answers are in variable terms hence not computable\n",
+ "\n",
+ "P=sigma_w/0.7847 #Maximum Allowable load in kips\n",
+ "\n",
+ "#Result\n",
+ "print \"The maximum allowable load is\",round(P,1),\"kips\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum allowable load is 22.9 kips\n"
+ ]
+ }
+ ],
+ "prompt_number": 58
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file