summaryrefslogtreecommitdiff
path: root/Mechanics_of_Materials_by_James_M._Gere/chapter3.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Mechanics_of_Materials_by_James_M._Gere/chapter3.ipynb')
-rwxr-xr-xMechanics_of_Materials_by_James_M._Gere/chapter3.ipynb539
1 files changed, 539 insertions, 0 deletions
diff --git a/Mechanics_of_Materials_by_James_M._Gere/chapter3.ipynb b/Mechanics_of_Materials_by_James_M._Gere/chapter3.ipynb
new file mode 100755
index 00000000..d7c23e2c
--- /dev/null
+++ b/Mechanics_of_Materials_by_James_M._Gere/chapter3.ipynb
@@ -0,0 +1,539 @@
+{
+ "metadata": {
+ "name": "",
+ "signature": "sha256:da6f3f49063c862fcfbad93321317f9b628a844507de164f29b9e55b975bec08"
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 3: Torsion"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.1, page no. 196"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "#initialisation\n",
+ "d = 1.5 # diameter of bar in inch\n",
+ "L = 54.0 # Length of bar in inch\n",
+ "G = 11.5e06 # modulus of elasticity in psi \n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "# Part (a)\n",
+ "T = 250.0 # torque\n",
+ "t_max = (16*T*12)/(math.pi*(d**3)) # maximum shear stress in bar\n",
+ "Ip = (math.pi*(d**4))/32 # polar miment of inertia \n",
+ "f = (T*12*L)/(G*Ip) # twist in radian\n",
+ "f_ = (f*180)/math.pi # twist in degree\n",
+ "print \"Maximum shear stress in the bar is \", round(t_max), \" psi\"\n",
+ "print \"Angle of twist is\", round(f_,2), \" degree\"\n",
+ "\n",
+ "#Part (b)\n",
+ "t_allow = 6000 # allowable shear stress\n",
+ "T1 = (math.pi*(d**3)*t_allow)/16 #allowable permissible torque in lb-in\n",
+ "T1_ = T1*0.0831658 #allowable permissible torque in lb-ft\n",
+ "f_allow = (2.5*math.pi)/180 # allowable twist in radian\n",
+ "T2 = (G*Ip*f_allow)/L # allowable stress via a another method\n",
+ "T2_ = T2*0.0831658 #allowable permissible torque in lb-ft\n",
+ "T_max = min(T1_,T2_) # minimum of the two\n",
+ "print \"Maximum permissible torque in the bar is\", round(T_max), \" lb-ft\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum shear stress in the bar is 4527.0 psi\n",
+ "Angle of twist is 1.62 degree\n",
+ "Maximum permissible torque in the bar is 331.0 lb-ft\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.2, page no. 197"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math \n",
+ "\n",
+ "#initialisation\n",
+ "T = 1200.0 # allowable torque in N-m\n",
+ "t = 40e06 # allowable shear stress in Pa\n",
+ "f = (0.75*math.pi)/180.0 # allowable rate of twist in rad/meter\n",
+ "G = 78e09 # modulus of elasticity\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "# Part (a) : Solid shaft\n",
+ "d0 = ((16.0*T)/(math.pi*t))**(1.0/3.0)\n",
+ "Ip = T/(G*f) # polar moment of inertia\n",
+ "d01 = ((32.0*Ip)/(math.pi))**(1.0/4.0) # from rate of twist definition\n",
+ "print \"The required diameter of the solid shaft is \", round(d0,5), \"m\"\n",
+ "\n",
+ "# Part (b) : hollow shaft\n",
+ "d2 = (T/(0.1159*t))**(1.0/3.0) # Diamater of hollow shaft in meter\n",
+ "d2_ = (T/(0.05796*G*f))**(1.0/4.0) # Another value of d2 by definition of theta(allow), f = T/(G*Ip)\n",
+ "d1 = 0.8*d2_ # because rate of twist governs the design\n",
+ "print \"The required diameter of the hollow shaft is \", round(d2,5), \"m\"\n",
+ "\n",
+ "# Part (c) : Ratio of diameter and weight\n",
+ "r1 = d2_/d01 # diameter ratio\n",
+ "r2 = ((d2_**2.0)-(d1**2.0))/(d01**2.0) # Weight Ratio\n",
+ "print \"Ratio of the diameter of the hollow and solid shaft is\", round(r1,2)\n",
+ "print \"Ratio of the weight of the hollow and solid shaft is\", round(r2,2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " The required diameter of the solid shaft is 0.05346 m\n",
+ "The required diameter of the hollow shaft is 0.06373 m\n",
+ "Ratio of the diameter of the hollow and solid shaft is 1.14\n",
+ "Ratio of the weight of the hollow and solid shaft is 0.47\n"
+ ]
+ }
+ ],
+ "prompt_number": 5
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.3, Page number 200"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "R1 = 0.6*1 #assumption for simplicity in calculations(for fig. a)\n",
+ "R2 = 1 #assumption for simplicity in calculations(for fig. b)\n",
+ "\n",
+ "#Calculations\n",
+ "Ip1 = (math.pi/2)*(1-(R1**4))\n",
+ "Ip2 = (math.pi*R2**4)/2\n",
+ "\n",
+ "B1 = Ip2/Ip1\n",
+ "B2 = Ip2/Ip1\n",
+ "\n",
+ "Wh = (math.pi*R2**2)*(1-R1**2)\n",
+ "Ws = math.pi*R2**2\n",
+ "B3 = Wh/Ws\n",
+ "\n",
+ "print \"Maximum shear stress in the hollow shaft to that in the solid shaft is\",round(B1,2)\n",
+ "print \"The ratio of the angles of twists is\",round(B2,2)\n",
+ "print \"The ratio of the weight of the hollow shaft to the weight of the solid shaft is\",B3\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum shear stress in the hollow shaft to that in the solid shaft is 1.15\n",
+ "The ratio of the angles of twists is 1.15\n",
+ "The ratio of the weight of the hollow shaft to the weight of the solid shaft is 0.64\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.4, page no. 205"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math \n",
+ "\n",
+ "#initialisation\n",
+ "d = 0.03 # diameter of the shaft in meter\n",
+ "T2 = 450.0 # Torque in N-m\n",
+ "T1 = 275.0 \n",
+ "T3 = 175.0 \n",
+ "Lbc = 0.5 # Length of shaft in meter\n",
+ "Lcd = 0.4 # Length of shaft in meter\n",
+ "G = 80e09 # Modulus of elasticity\n",
+ "\n",
+ "#calculation\n",
+ "Tcd = T2-T1 # torque in segment CD\n",
+ "Tbc = -T1 # torque in segment BC\n",
+ "tcd = (16.0*Tcd)/(math.pi*(d**3)) # shear stress in cd segment\n",
+ "\n",
+ "print \"Shear stress in segment cd is\", round(tcd/1000000,1), \" MPa\"\n",
+ "tbc = (16.0*Tbc)/(math.pi*(d**3)) # shear stress in bc segment\n",
+ "\n",
+ "#answer given in the textbook for tbc is wrong\n",
+ "print \"Shear stress in segment bc is\", round(tbc/1000000,1), \" MPa\"\n",
+ "Ip = (math.pi/32)*(d**4) # Polar monent of inertia\n",
+ "fbc = (Tbc*Lbc)/(G*Ip) # angle of twist in radian\n",
+ "fcd = (Tcd*Lcd)/(G*Ip) # angle of twist in radian\n",
+ "fbd = fbc + fcd # angle of twist in radian\n",
+ "print \"Angles of twist in section BD\", round(fbd,3), \" radian\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Shear stress in segment cd is 33.0 MPa\n",
+ "Shear stress in segment bc is -51.9 MPa\n",
+ "Angles of twist in section BD -0.011 radian\n"
+ ]
+ }
+ ],
+ "prompt_number": 6
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.6, page no. 214"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "import math\n",
+ "\n",
+ "#initialisation \n",
+ "d1 = 0.06 # Inner diameter in meter\n",
+ "d2 = 0.08 # Outer diameter in meter\n",
+ "r = d2/2.0 # Outer radius\n",
+ "G = 27e09 # Modulus of elasticity\n",
+ "T = 4000.0 # Torque in N-m\n",
+ "\n",
+ "#calculation\n",
+ "Ip = (math.pi/32)*((d2**4)-(d1**4)) # Polar moment of inertia\n",
+ "t_max = (T*r)/Ip # maximum shear stress\n",
+ "print \"Maximum shear stress in tube is \", t_max, \" Pa\"\n",
+ "s_t = t_max # Maximum tensile stress\n",
+ "print \"Maximum tensile stress in tube is \", s_t, \" Pa\"\n",
+ "s_c = -(t_max) # Maximum compressive stress\n",
+ "print \"Maximum compressive stress in tube is \", s_c, \" Pa\"\n",
+ "g_max = t_max / G # Maximum shear strain in radian\n",
+ "print \"Maximum shear strain in tube is \", round(g_max,4), \" radian\"\n",
+ "e_t = g_max/2.0 # Maximum tensile strain in radian\n",
+ "print \"radian\",e_t,\"Maximum tensile strain in tube is \", round(e_t,4), \" radian\"\n",
+ "e_c = -g_max/2.0 # Maximum compressive strain in radian\n",
+ "print \"Maximum compressive strain in tube is \", round(e_c,4), \" radian\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Maximum shear stress in tube is 58205236.3308 Pa\n",
+ "Maximum tensile stress in tube is 58205236.3308 Pa\n",
+ "Maximum compressive stress in tube is -58205236.3308 Pa\n",
+ "Maximum shear strain in tube is 0.0022 radian\n",
+ "radian 0.00107787474687 Maximum tensile strain in tube is 0.0011 radian\n",
+ "Maximum compressive strain in tube is -0.0011 radian\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.7, page no. 219"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "#initialisation\n",
+ "H = 40.0 # Power in hp\n",
+ "s = 6000.0 # allowable shear stress in steel in psi\n",
+ "\n",
+ "#calculation\n",
+ "# Part (a)\n",
+ "n = 500.0 # rpm\n",
+ "T = ((33000.0*H)/(2*math.pi*n))*(5042.0/420.0) # Torque in lb-in\n",
+ "d = ((16.0*T)/(math.pi*s))**(1.0/3.0) # diameter in inch\n",
+ "print \"Diameter of the shaft at 500 rpm\", round(d,2), \" inch\"\n",
+ "\n",
+ "# Part (b)\n",
+ "n1 = 3000.0 # rpm\n",
+ "T1 = ((33000.0*H)/(2*math.pi*n1))*(5042.0/420.0) # Torque in lb-in\n",
+ "d1 = ((16*T1)/(math.pi*s))**(1.0/3.0) # diameter in inch\n",
+ "print \"Diameter of the shaft at 3000 rpm\", round(d1,2), \" inch\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Diameter of the shaft at 500 rpm 1.62 inch\n",
+ "Diameter of the shaft at 3000 rpm 0.89 inch\n"
+ ]
+ }
+ ],
+ "prompt_number": 8
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.8, page no. 221"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "#initialisation\n",
+ "\n",
+ "d = 0.05 # diameter of the shaft\n",
+ "Lab = 1.0 # Length of shaft ab in meter\n",
+ "Lbc = 1.2 # Length of shaft bc in meter\n",
+ "Pa = 50000.0 # Power in Watt at A\n",
+ "Pb = 35000.0 # Power in Watt at B\n",
+ "Ip = (math.pi/32)*(d**4) # Polar moment of inertia\n",
+ "Pc = 15000.0 # Power in Watt at C\n",
+ "G = 80e09 # Modulus of elasticity\n",
+ "f = 10.0 # frequency in Hz \n",
+ "\n",
+ "#Calculations\n",
+ "Ta = Pa/(2*math.pi*f) # Torque in N-m at A\n",
+ "Tb = Pb/(2*math.pi*f) # Torque in N-m at B\n",
+ "Tc = Pc/(2*math.pi*f) # Torque in N-m at B\n",
+ "Tab = Ta # Torque in N-m in shaft ab\n",
+ "Tbc = Tc # Torque in N-m in shaft bc\n",
+ "tab = (16*Tab)/(math.pi*(d**3)) # shear stress in ab segment\n",
+ "fab = (Tab*Lab)/(G*Ip) # angle of twist in radian\n",
+ "tbc = (16*Tbc)/(math.pi*(d**3)) # shear stress in ab segment\n",
+ "fbc = (Tbc*Lbc)/(G*Ip) # angle of twist in radian\n",
+ "fac = (fab+fbc)*(180.0/math.pi) # angle of twist in degree in segment ac\n",
+ "tmax = Tab # Maximum shear stress\n",
+ "\n",
+ "#Result\n",
+ "print \"The maximum shear stress tmax in the shaft\", round(tmax), \" Nm\"\n",
+ "print \"Angle of twist in segment AC\", round(fac,2), \" degree\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The maximum shear stress tmax in the shaft 796.0 Nm\n",
+ "Angle of twist in segment AC 1.26 degree\n"
+ ]
+ }
+ ],
+ "prompt_number": 9
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.10, page no. 230"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "import math \n",
+ "\n",
+ "#initialisation\n",
+ "Ta = 100.0 # Torque in N-m at A\n",
+ "Tb = 150.0 # Torque in N-m at B\n",
+ "L = 1.6 # Length of shaft in meter\n",
+ "G = 80e09 # Modulus of elasticity\n",
+ "Ip = 79.52e-09 # polar moment of inertia in m4\n",
+ "\n",
+ "#calculation\n",
+ "\n",
+ "Ua = ((Ta**2)*L)/(2*G*Ip) # Strain energy at A\n",
+ "print \"Torque acting at free end\", round(Ua,2), \" joule\"\n",
+ "Ub = ((Tb**2)*L)/(4*G*Ip) # Strain energy at B\n",
+ "print \"Torque acting at mid point\", round(Ub,2), \" joule\"\n",
+ "a = (Ta*Tb*L)/(2*G*Ip) # dummy variabble\n",
+ "Uc = Ua+a+Ub # Strain energy at C\n",
+ "print \"Total torque\", round(Uc,2), \"joule\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Torque acting at free end 1.26 joule\n",
+ "Torque acting at mid point 1.41 joule\n",
+ "Total torque 4.56 joule\n"
+ ]
+ }
+ ],
+ "prompt_number": 7
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 3.11, page no. 231"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "\n",
+ "import math \n",
+ "t = 480.0 # Torque of consmath.tant intensity\n",
+ "L = 144.0 # Length of bar\n",
+ "G = 11.5e06 # Modulus of elasticity in Psi\n",
+ "Ip = 17.18 # Polar moment of inertia\n",
+ "\n",
+ "#Calculation\n",
+ "U = ((t**2)*(L**3))/(G*Ip*6) # strain energy in in-lb\n",
+ "\n",
+ "#Result\n",
+ "print \"The strain energy for the hollow shaft is\", round(U), \"in-lb\""
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The strain energy for the hollow shaft is 580.0 in-lb\n"
+ ]
+ }
+ ],
+ "prompt_number": 11
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "example 3.14, page no. 242"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "\n",
+ "import math\n",
+ "\n",
+ "#Variable declaration\n",
+ "r = 1 #assuming r = 1 for simplicity in calculations\n",
+ "\n",
+ "#Calculations\n",
+ "Am2 = (math.pi*r)**2/4\n",
+ "Am1 = math.pi*r**2\n",
+ "\n",
+ "T1_T2 = Am2/Am1\n",
+ "\n",
+ "t = 1 #assuming t = 1 for simplicity in calculations\n",
+ "J2 = ((math.pi*r)**3*t)/8\n",
+ "J1 = 2*math.pi*r**3*t\n",
+ "phi1_phi2 = J2/J1\n",
+ "\n",
+ "#Results\n",
+ "print \"Ratio of shear stress is \", round(T1_T2,2)\n",
+ "print \"Ratio of angle of twist is \", round(phi1_phi2, 2)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ " Ratio of shear stress is 0.79\n",
+ "Ratio of angle of twist is 0.62\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file