diff options
Diffstat (limited to 'Materials_Science_by_Dr._M._Arumugam/Chapter10.ipynb')
-rwxr-xr-x | Materials_Science_by_Dr._M._Arumugam/Chapter10.ipynb | 556 |
1 files changed, 556 insertions, 0 deletions
diff --git a/Materials_Science_by_Dr._M._Arumugam/Chapter10.ipynb b/Materials_Science_by_Dr._M._Arumugam/Chapter10.ipynb new file mode 100755 index 00000000..bf94717f --- /dev/null +++ b/Materials_Science_by_Dr._M._Arumugam/Chapter10.ipynb @@ -0,0 +1,556 @@ +{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "#10: Optical Materials"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.1, Page number 10.61"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 32,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "wavelength of emission is 8628.0 angstrom\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "h=6.626*10**-34; #plancks constant(J s)\n",
+ "c=3*10**8; #velocity of light(m/s)\n",
+ "Eg=1.44*1.6*10**-19; #band gap(J)\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=h*c/Eg; #wavelength of emission(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"wavelength of emission is\",round(lamda*10**10),\"angstrom\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.2, Page number 10.61"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 33,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "band gap is 0.8 eV\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "lamda=1.55; #wavelength(micro m)\n",
+ "\n",
+ "#Calculation\n",
+ "Eg=1.24/lamda; #band gap(eV)\n",
+ "\n",
+ "#Result\n",
+ "print \"band gap is\",Eg,\"eV\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.3, Page number 10.61"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 34,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "number of electron-hole pairs is 3.25 *10**5\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "eta=0.65; #quantum efficiency\n",
+ "n=5*10**5; #number of photons incident\n",
+ "\n",
+ "#Calculation\n",
+ "N=eta*n; #number of electron-hole pairs\n",
+ "\n",
+ "#Result\n",
+ "print \"number of electron-hole pairs is\",N/10**5,\"*10**5\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.4, Page number 10.61"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 35,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "responsibility is 0.628 A/W\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "eta=0.6; #quantum efficiency\n",
+ "q=1.6*10**-19; #charge(coulomb)\n",
+ "lamda=1.3*10**-6; #lamda(m)\n",
+ "h=6.625*10**-34; #plancks constant(J s)\n",
+ "c=3*10**8; #velocity of light(m/s)\n",
+ "\n",
+ "#Calculation\n",
+ "R=eta*q*lamda/(h*c); #responsibility(A/W)\n",
+ "\n",
+ "#Result\n",
+ "print \"responsibility is\",round(R,3),\"A/W\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.5, Page number 10.61"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 36,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "multiplication factor is 41\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "eta=0.7; #quantum efficiency\n",
+ "q=1.6*10**-19; #charge(coulomb)\n",
+ "lamda=863*10**-9; #lamda(m)\n",
+ "P0=0.5*10**-6; #optical power(W)\n",
+ "h=6.625*10**-34; #plancks constant(J s)\n",
+ "c=3*10**8; #velocity of light(m/s)\n",
+ "IT=10*10**-6; #current(A)\n",
+ "\n",
+ "#Calculation\n",
+ "IP=eta*q*lamda*P0/(h*c);\n",
+ "M=IT/IP; #multiplication factor\n",
+ "\n",
+ "#Result\n",
+ "print \"multiplication factor is\",int(M)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.6, Page number 10.62"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 37,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "critical angle is 78.5 degrees\n",
+ "numerical aperture is 0.3\n",
+ "acceptance angle is 17.4 degrees\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n2=1.47; #refractive index of cladding\n",
+ "n1=1.5; #refractive index of core\n",
+ "\n",
+ "#Calculation\n",
+ "phi_c=math.asin(n2/n1); #critical angle(radian)\n",
+ "phi_c=phi_c*180/math.pi; #critical angle(degrees)\n",
+ "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n",
+ "phi_max=math.asin(NA); #acceptance angle(radian)\n",
+ "phi_max=phi_max*180/math.pi; #acceptance angle(degrees)\n",
+ "\n",
+ "#Result\n",
+ "print \"critical angle is\",round(phi_c,1),\"degrees\"\n",
+ "print \"numerical aperture is\",round(NA,1)\n",
+ "print \"acceptance angle is\",round(phi_max,1),\"degrees\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.7, Page number 10.62"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 38,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "total number of guided modes is 490.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=50*10**-6; #diameter(m)\n",
+ "NA=0.2; #numerical aperture(m)\n",
+ "lamda=1*10**-6; #wavelength(m)\n",
+ "\n",
+ "#Calculation\n",
+ "N=4.9*(d*NA/lamda)**2; #total number of guided modes\n",
+ "\n",
+ "#Result\n",
+ "print \"total number of guided modes is\",N"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.8, Page number 10.62"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 41,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "total number of guided modes is 1\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "d=5*10**-6; #diameter(m)\n",
+ "n2=1.447; #refractive index of cladding\n",
+ "n1=1.45; #refractive index of core\n",
+ "lamda=1*10**-6; #wavelength(m)\n",
+ "\n",
+ "#Calculation\n",
+ "NA=math.sqrt(n1**2-n2**2); #numerical aperture\n",
+ "N=4.9*(d*NA/lamda)**2; #total number of guided modes\n",
+ "\n",
+ "#Result\n",
+ "print \"total number of guided modes is\",int(N)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.9, Page number 10.63"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 42,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "numerical aperture is 0.46\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "n1=1.46; #refractive index of core\n",
+ "delta=0.05; #refractive index difference\n",
+ "\n",
+ "#Calculation\n",
+ "NA=n1*math.sqrt(2*delta); #numerical aperture\n",
+ "\n",
+ "#Result\n",
+ "print \"numerical aperture is\",round(NA,2)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.10, Page number 10.63"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 44,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "V number is 94.72\n",
+ "maximum number of modes is 4486.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "a=50;\n",
+ "n2=1.5; #refractive index of cladding\n",
+ "n1=1.53; #refractive index of core\n",
+ "lamda0=1; #wavelength(micro m)\n",
+ "\n",
+ "#Calculation\n",
+ "V_number=round(2*math.pi*a*math.sqrt(n1**2-n2**2)/lamda0,2); #V number\n",
+ "n=V_number**2/2; #maximum number of modes\n",
+ "\n",
+ "#Result\n",
+ "print \"V number is\",V_number\n",
+ "print \"maximum number of modes is\",round(n)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.11, Page number 10.63"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 45,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "total number of modes is 49178.0\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "a=100*10**-6;\n",
+ "NA=0.3; #numerical aperture(m)\n",
+ "lamda=850*10**-9; #wavelength(m)\n",
+ "\n",
+ "#Calculation\n",
+ "V_number=round(2*math.pi**2*a**2*NA**2/lamda**2); #number of modes\n",
+ "\n",
+ "#Result\n",
+ "print \"total number of modes is\",2*V_number"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.12, Page number 10.63"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 46,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "cutoff wavelength is 1.315 micro m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "a=25*10**-6;\n",
+ "n1=1.48; #refractive index of core\n",
+ "delta=0.01; #refractive index difference\n",
+ "V=25; #Vnumber\n",
+ "\n",
+ "#Calculation\n",
+ "lamda=2*math.pi*a*n1*math.sqrt(2*delta)/V; #cutoff wavelength(m)\n",
+ "\n",
+ "#Result\n",
+ "print \"cutoff wavelength is\",round(lamda*10**6,3),\"micro m\""
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "##Example number 10.13, Page number 10.63"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 48,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "maximum value of core radius is 9.95 micro m\n"
+ ]
+ }
+ ],
+ "source": [
+ "#importing modules\n",
+ "import math\n",
+ "from __future__ import division\n",
+ "\n",
+ "#Variable declaration\n",
+ "V=2.405; #Vnumber\n",
+ "lamda=1.3; #wavelength(micro m)\n",
+ "NA=0.05; #numerical aperture(m)\n",
+ "\n",
+ "#Calculation\n",
+ "amax=V*lamda/(2*math.pi*NA); #maximum value of core radius(micro m)\n",
+ "\n",
+ "#Result\n",
+ "print \"maximum value of core radius is\",round(amax,2),\"micro m\""
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}
|