diff options
Diffstat (limited to 'MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter9_lYxlTcT.ipynb')
-rw-r--r-- | MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter9_lYxlTcT.ipynb | 466 |
1 files changed, 466 insertions, 0 deletions
diff --git a/MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter9_lYxlTcT.ipynb b/MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter9_lYxlTcT.ipynb new file mode 100644 index 00000000..6496faeb --- /dev/null +++ b/MECHANICS_OF_SOLIDS_by_S.S._Bhavikatti/Chapter9_lYxlTcT.ipynb @@ -0,0 +1,466 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter9-Beams" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# example 9.1 page number 286" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RB= 18.8684 KN\n", + "RA= 29.989 KN\n", + "alpha= 25.21 °\n" + ] + } + ], + "source": [ + "from math import pi,atan,sqrt,cos,sin\n", + "\n", + "#variable declaration\n", + "\n", + "#summation of all horizontal forces is zero & vertical forces is zero.\n", + "P1=float(10) #Vertical down Load at 4m from A,KN\n", + "P2=float(15) #Inclined down Load at angle 30° at 6m from A,KN\n", + "P3=float(20) #Inclined down Load at angle 45° at 10m from A,KN\n", + "theta2=30\n", + "theta3=45\n", + "#horizontal,vertical component at A is Ha,Va respectively.\n", + "\n", + "Ha=P2*cos(theta2*pi/180)+P3*cos(theta3*pi/180)\n", + "Rb=(P1*4+P2*6*sin(theta2*pi/180)+P3*10*sin(theta3*pi/180))/12 #reaction at B point,KN\n", + "\n", + "print \"RB=\",round(Rb,4),\"KN\"\n", + "\n", + "#now vertical component\n", + "Va=P2*sin(theta2*pi/180)+P3*sin(theta3*pi/180)+P1-Rb\n", + "\n", + "Ra=sqrt(pow(Ha,2)+pow(Va,2))\n", + "\n", + "print \"RA=\",round(Ra,4),\"KN\"\n", + "\n", + "alpha=(atan(Va/Ha))*180/pi\n", + "\n", + "print \"alpha=\",round(alpha,2),\"°\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# example 9.2 page number 287" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RB= 100.4475 KN\n", + "RA= 87.0172 KN\n", + "alpha= 79.45 °\n" + ] + } + ], + "source": [ + "from math import pi,atan,sqrt,cos,sin\n", + "\n", + "#variable declaration\n", + "\n", + "#summation of all horizontal forces is zero & vertical forces is zero.\n", + "P1=float(60) #inclined down to right Load at angle 60 at 1m from A,KN\n", + "P2=float(80) #Inclined down to left Load at angle 75° at 3m from A,KN\n", + "P3=float(50) #Inclined down to left Load at angle 60° at 5.5m from A,KN\n", + "theta1=60 \n", + "theta2=75\n", + "theta3=60\n", + "thetaRb=60\n", + "#horizontal,vertical component at A is Ha,Va respectively.\n", + "\n", + "Rb=(P1*1*sin(theta1*pi/180)+P2*3*sin(theta2*pi/180)+P3*5.5*sin(theta3*pi/180))/(6*sin(thetaRb*pi/180)) #reaction at B point,KN\n", + "Ha=-P1*cos(theta1*pi/180)+P2*cos(theta2*pi/180)-P3*cos(theta3*pi/180)+Rb*cos(thetaRb*pi/180)\n", + "print \"RB=\",round(Rb,4),\"KN\"\n", + "\n", + "#now vertical component\n", + "Va=P1*sin(theta1*pi/180)+P2*sin(theta2*pi/180)+P3*sin(theta3*pi/180)-Rb*sin(thetaRb*pi/180)\n", + "\n", + "Ra=sqrt(pow(Ha,2)+pow(Va,2))\n", + "\n", + "print \"RA=\",round(Ra,4),\"KN\"\n", + "\n", + "alpha=(atan(Va/Ha))*180/pi\n", + "\n", + "print \"alpha=\",round(alpha,2),\"°\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# example 9.3 page number 288\n" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RA= 91.6503 KN\n", + "HB= 42.4264 KN\n", + "VB= 90.7761 KN\n", + "RB= 100.2013 KN\n", + "alpha= 64.95 °\n" + ] + } + ], + "source": [ + "from math import pi,atan,sqrt,cos,sin\n", + "\n", + "#variable declaration\n", + "\n", + "#summation of all horizontal forces is zero & vertical forces is zero.\n", + "P1=float(20) #vertical down Load at 2m from A,KN\n", + "P2=float(30) #uniform distributed load from 2m to 6m from A,KN/m(in 4m of span)\n", + "P3=float(60) #Inclined down to right Load at angle 45° at 7m from A,KN\n", + "\n", + "theta3=45\n", + "#horizontal,vertical component at B is Hb,Vb respectively.\n", + "\n", + "Ra=(P1*7+P2*4*5+P3*2*sin(theta3*pi/180))/(9) #reaction at B point,KN\n", + "\n", + "print \"RA=\",round(Ra,4),\"KN\"\n", + "\n", + "Hb=P3*cos(theta3*pi/180)\n", + "print \"HB=\",round(Hb,4),\"KN\"\n", + "#now vertical component\n", + "Vb=P1+P2*4+P3*sin(theta3*pi/180)-Ra\n", + "print \"VB=\",round(Vb,4),\"KN\"\n", + "\n", + "Rb=sqrt(pow(Hb,2)+pow(Vb,2))\n", + "\n", + "print \"RB=\",round(Rb,4),\"KN\"\n", + "\n", + "alpha=(atan(Vb/Hb))*180/pi\n", + "\n", + "print \"alpha=\",round(alpha,2),\"°\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# example 9.4 page number 288" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no horizontal force HA=0\n", + "VA= 74.0 KN\n", + "MA= 148.0 KN-m\n" + ] + } + ], + "source": [ + "#variable declaration\n", + "#Let the reactions at A be Ha, Va and Ma\n", + "#summation of all horizontal forces is zero & vertical forces is zero.\n", + "\n", + "P1=float(20) #vertical down Load at 2m from A,KN\n", + "P2=float(12) #vertical down Load at 3m from A,KN \n", + "P3=float(10) #vertical down Load at 4m from A,KN\n", + "Pu=float(16) #uniform distributed load from A to 2m from A,KN/m(in 2m of span)\n", + "##horizontal,vertical component at A is Ha,Va respectively.\n", + "print\"no horizontal force \",\"HA=0\"\n", + "Va=Pu*2+P1+P2+P3\n", + "print \"VA=\", round(Va,2),\"KN\"\n", + "Ma=Pu*2*1+P1*2+P2*3+P3*4\n", + "print \"MA=\", round(Ma,2),\"KN-m\"\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# example 9.5 page number 288\n" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no horizontal force HA=0\n", + "VA= 65.0 KN\n", + "MA= 165.0 KN-m\n" + ] + } + ], + "source": [ + "#variable declaration\n", + "#Let the reactions at A be Va and Ma\n", + "#summation of all horizontal forces is zero & vertical forces is zero.\n", + "\n", + "P1=float(15) #vertical down Load at 3m from A,KN\n", + "P2=float(10) #vertical down Load at 5m from A,KN \n", + "M=float(30) #CW moment at 4m distance from A, KN-m\n", + "Pu=float(20) #uniform distributed load from A to 2m from A,KN/m(in 2m of span)\n", + "##horizontal,vertical component at A is Ha,Va respectively.\n", + "print\"no horizontal force \",\"HA=0\"\n", + "Va=Pu*2+P1+P2\n", + "print \"VA=\", round(Va,2),\"KN\"\n", + "Ma=Pu*2*1+P1*3+P2*5+M\n", + "print \"MA=\", round(Ma,2),\"KN-m\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# example 9.6 page number 289" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RB= 100.0 KN\n", + "RA= 30.0 KN\n" + ] + } + ], + "source": [ + "#variable declaration\n", + "\n", + "#As supports A and B are simple supports and loading is only in vertical direction, the reactions RA and RB are in vertical directions only.\n", + "\n", + "#summation of all horizontal forces is zero & vertical forces is zero.\n", + "\n", + "P1=float(30) #vertical down Load at 1m from A,KN\n", + "P2=float(40) #vertical down Load at 6.5m from A,KN \n", + "Pu=float(20) #uniform distributed load from 2m to 5m from A,KN/m(in 3m of span).\n", + "\n", + "Rb=(Pu*3*3.5+P1*1+P2*6.5)/5\n", + "print \"RB=\", round(Rb,2),\"KN\"\n", + "Ra=Pu*3+P1+P2-Rb\n", + "print \"RA=\", round(Ra,2),\"KN\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# example 9.7 page number 289\n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "no horizontal force HA=0\n", + "VB= 50.0 KN\n", + "VA= 70.0 KN\n" + ] + } + ], + "source": [ + "#variable declaration\n", + "#Let the reactions at A be Va and Ma.\n", + "#summation of all horizontal forces is zero & vertical forces is zero.\n", + "\n", + "P1=float(60) #vertical down Load at 4m from A to right,KN\n", + "P2=float(20) #vertical down Load at 11m from A to right,KN \n", + "M=float(30) #CW moment at 7m distance from A to right, KN-m\n", + "Pu=float(20) #uniform distributed load from A to 2m from A to left ,KN/m(in 2m of span)\n", + "##horizontal,vertical component at A is Ha,Va respectively.\n", + "print\"no horizontal force \",\"HA=0\"\n", + "Vb=(-Pu*2*1+P1*4+P2*11+M)/9\n", + "print \"VB=\", round(Vb,2),\"KN\"\n", + "Va=Pu*2+P1+P2-Vb\n", + "print \"VA=\", round(Va,2),\"KN\"\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# example 9.8 page number 290\n" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "RB= 71.011 KN\n", + "(Negative sign show that the assumed direction of VA is wrong. In other words, VA is acting vertically downwards). \n", + "RA= 23.3666 KN\n", + "alpha= 24.79 °\n" + ] + } + ], + "source": [ + "from math import pi,atan,sqrt,cos,sin\n", + "\n", + "#variable declaration\n", + "\n", + "#summation of all horizontal forces is zero & vertical forces is zero.\n", + " \n", + "P1=float(30) #Inclined down Load at angle 45° to left at 5m from A,KN\n", + "Pu=float(20) #uniformly distributed load from 6m to 8m from A ,KN,(2m of span)\n", + "theta1=45\n", + "M=40 #ACW moment at 3m from A, KN-m\n", + "#horizontal,vertical component at A is Ha,Va respectively.\n", + "\n", + "Rb=(M+P1*5*sin(theta1*pi/180)+Pu*2*7)/6 #reaction at B point,KN\n", + "\n", + "print \"RB=\",round(Rb,4),\"KN\"\n", + "\n", + "Ha=P1*cos(theta1*pi/180)\n", + "\n", + "#now vertical component\n", + "Va=P1*sin(theta1*pi/180)-Rb+Pu*2\n", + "\n", + "Ra=sqrt(pow(Ha,2)+pow(Va,2))\n", + "\n", + "print \"(Negative sign show that the assumed direction of VA is wrong. In other words, VA is acting vertically downwards). \"\n", + "\n", + "Va1=-1*Va\n", + "print \"RA=\",round(Ra,4),\"KN\"\n", + "\n", + "alpha=(atan(Va1/Ha))*180/pi\n", + "\n", + "print \"alpha=\",round(alpha,2),\"°\"" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# example 9.9 page number 290\n" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "X= 5.0 m\n" + ] + } + ], + "source": [ + "#variable declaration\n", + "\n", + "#summation of all horizontal forces is zero & vertical forces is zero.\n", + " \n", + "#Let the left support C be at a distance x metres from A. \n", + "\n", + "P1=float(30) #vertical down load at A,KN\n", + "Pu=float(6) #uniform distributed load over whole span,KN/m,(20m of span)\n", + "P2=float(50) #vertical down load at B, KN\n", + "\n", + "#Rc=Rd(given) reaction at C & D is equal.\n", + "\n", + "Rc=(P1+P2+Pu*20)/2\n", + "Rd=Rc\n", + "\n", + "#taking moment at A \n", + "x=(((Pu*20*10+P2*20)/100)-12)/2\n", + "\n", + "print \"X=\", round(x,2),\"m\"\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python [Root]", + "language": "python", + "name": "Python [Root]" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.12" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |