summaryrefslogtreecommitdiff
path: root/Linear_Integrated_Circuits_by_J._B._Gupta/chapter07_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Linear_Integrated_Circuits_by_J._B._Gupta/chapter07_1.ipynb')
-rwxr-xr-xLinear_Integrated_Circuits_by_J._B._Gupta/chapter07_1.ipynb444
1 files changed, 444 insertions, 0 deletions
diff --git a/Linear_Integrated_Circuits_by_J._B._Gupta/chapter07_1.ipynb b/Linear_Integrated_Circuits_by_J._B._Gupta/chapter07_1.ipynb
new file mode 100755
index 00000000..a1dee947
--- /dev/null
+++ b/Linear_Integrated_Circuits_by_J._B._Gupta/chapter07_1.ipynb
@@ -0,0 +1,444 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter-7 : Oscillators (Sinusoidal As Well As Non-Sinusoidal)"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example : 7.1 - Page No 232"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "from numpy import pi\n",
+ "from math import sqrt\n",
+ "# Given data\n",
+ "f=200 # in Hz\n",
+ "# Let us take\n",
+ "C=0.1 # in micro F\n",
+ "C=C*10**-6 # in F\n",
+ "R=1/(2*pi*f*C*sqrt(6)) # in ohm\n",
+ "R=R*10**-3 # in k ohm\n",
+ "# R1>=10*R, Let\n",
+ "R1=10*R # in kohm\n",
+ "R_f= 29*R1 # in k ohm\n",
+ "R_f=R_f*10**-3 # in M ohm\n",
+ "R_f=math.ceil(R_f) \n",
+ "print \"Resistor of phase-shift oscillator = %0.f Mohm\" %R_f"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Resistor of phase-shift oscillator = 1 Mohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example : 7.2 - Page No 232"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Given data\n",
+ "f=1 # in kHz\n",
+ "f=f*10**3 # in Hz\n",
+ "V_CC= 10 # in volt\n",
+ "I_B_max= 500 # in nA (for 741 IC op-amp)\n",
+ "I_B_max= I_B_max*10**-9 # in A\n",
+ "I1= 100*I_B_max # in A\n",
+ "V_out= (V_CC-1) # in volt\n",
+ "V_in= V_out/29 \n",
+ "R1= V_in/I1 # in ohm\n",
+ "R1=R1*10**-3 #in k ohm\n",
+ "# 5.6 k ohm resistor may be used for R1, being standard value resistor\n",
+ "R1=5.6 # in k ohm (standard value)\n",
+ "A=29 \n",
+ "R_f= A*R1 \n",
+ "# 180 k ohm resistor may be used to provide A > 29\n",
+ "R_f=180 # in k ohm (standard value)\n",
+ "R_comp= R_f \n",
+ "R=R1 # in k ohm\n",
+ "R=R*10**3 # in ohm\n",
+ "C=1/(2*pi*f*R*sqrt(6)) # in F\n",
+ "C=C*10**6 # in micro F\n",
+ "print \"Value of R_comp = R_f = %0.f kohm\" %R_comp\n",
+ "print \"Value of R = R1 = %0.1f in kohm\" %(R*10**-3)\n",
+ "print \"Value of capacitor = %0.2f micro F\" %C"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Value of R_comp = R_f = 180 kohm\n",
+ "Value of R = R1 = 5.6 in kohm\n",
+ "Value of capacitor = 0.01 micro F\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example : 7.3 - Page No 235"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Given data\n",
+ "f=10 # in kHz\n",
+ "f=f*10**3 # in Hz\n",
+ "I_Bmax= 500 # in nA\n",
+ "I_Bmax= I_Bmax*10**-9 # in amphere\n",
+ "# Let current through resistor R1 be equal to 100 times I_Bmax, so\n",
+ "I_1= 100*I_Bmax # in amp\n",
+ "Vcc= 10 # in volt\n",
+ "Vout= Vcc-1 # in volt\n",
+ "Addition_RfR1= Vout/(500*10**-6) # value of Rf+R1 in ohm\n",
+ "Addition_RfR1=Addition_RfR1*10**-3 # in kohm\n",
+ "# Rf= 2*R1, So\n",
+ "R1= Addition_RfR1/3 # (used 5.6 kohm Standard value resistor)\n",
+ "print \"Value of R1 = %0.f kohm (Standard value 5.6 k ohm)\" %R1\n",
+ "R1= 5.6 # in kohm (used 5.6 kohm Standard value resistor)\n",
+ "Rf= 2*R1 # in kohm# (used 12 kohm standard value resistor)\n",
+ "print \"Value of Rf = %0.1f kohm (Standard value 12 k ohm)\" %Rf\n",
+ "Rf= 12 # k ohm (used 12 kohm standard value resistor)\n",
+ "R=R1 # in kohm\n",
+ "C= 1/(2*pi*f*R) # in F (Used 2700pF standard value)\n",
+ "C=2700 # in pF \n",
+ "print \"Value of R = %0.1f kohm\" %R\n",
+ "print \"Value of C = %0.f pF\" %C"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Value of R1 = 6 kohm (Standard value 5.6 k ohm)\n",
+ "Value of Rf = 11.2 kohm (Standard value 12 k ohm)\n",
+ "Value of R = 5.6 kohm\n",
+ "Value of C = 2700 pF\n"
+ ]
+ }
+ ],
+ "prompt_number": 12
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example : 7.4 - Page No 235"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Given data\n",
+ "R= 1 # in kohm\n",
+ "R=R*10**3 # in ohm\n",
+ "C= 4.7 # in micro F\n",
+ "C=C*10**-6 # in F\n",
+ "omega=1/(R*C) # in radians/second\n",
+ "f=omega/(2*pi) # in Hz\n",
+ "print \"Frequency of the oscillation of the circuit = %0.2f Hz\" %f"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Frequency of the oscillation of the circuit = 33.86 Hz\n"
+ ]
+ }
+ ],
+ "prompt_number": 13
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example : 7.6 - Page No 236"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Given data\n",
+ "R= 10 # in kohm\n",
+ "R=R*10**3 # in ohm\n",
+ "C= 100 # in pF\n",
+ "C=C*10**-12 # in F\n",
+ "f=1/(2*pi*R*C) # in Hz\n",
+ "print \"Frequency of the oscillation of the circuit = %0.2f kHz\" %(f*10**-3)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Frequency of the oscillation of the circuit = 159.15 kHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 15
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example : 7.7 - Page No 238"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Given data\n",
+ "fo= 318 # in Hz\n",
+ "C= 0.015 # in microF\n",
+ "C=C*10**-6 # in F\n",
+ "R=0.159/(fo*C) # in ohm\n",
+ "R=R*10**-3 # in kohm\n",
+ "R=int(R) \n",
+ "print \"Value of C1 = C2 = C3 = %0.3f micro F\" %(C*10**6)\n",
+ "print \"Value of R1 = R2 = R3 = %0.f in kohm\" %R"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Value of C1 = C2 = C3 = 0.015 micro F\n",
+ "Value of R1 = R2 = R3 = 33 in kohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 16
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example : 7.8 - Page No 238"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Given data\n",
+ "fo= 1.5 # in kHz\n",
+ "fo=fo*10**3 # in Hz\n",
+ "C= 0.01 # in microF\n",
+ "C=C*10**-6 # in F\n",
+ "R=0.159/(fo*C) # in ohm\n",
+ "R=R*10**-3 # in kohm\n",
+ "R=int(R) \n",
+ "print \"Value of C1 = C2 = C3 = %0.2f micro F\" %(C*10**6)\n",
+ "print \"Value of R1 = R2 = R3 = %0.f in kohm\" %R"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Value of C1 = C2 = C3 = 0.01 micro F\n",
+ "Value of R1 = R2 = R3 = 10 in kohm\n"
+ ]
+ }
+ ],
+ "prompt_number": 17
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example : 7.9 - Page No 245"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Given data\n",
+ "C= 0.1 # in microF\n",
+ "C=C*10**-6 # in F\n",
+ "R=12 # in kohm\n",
+ "R=R*10**3 # in ohm\n",
+ "R1=120 # in kohm\n",
+ "R1=R1*10**3 # in ohm\n",
+ "Rf=1 # in Mohm\n",
+ "Rf=Rf*10**6 # in ohm\n",
+ "V_sat= 10 # in volt\n",
+ "# Part(i)\n",
+ "f=Rf/(4*R1*R*C) #in Hz\n",
+ "print \"(i) : Signal Frequency = %0.3f kHz\" %(f*10**-3)\n",
+ "\n",
+ "# Part(ii)\n",
+ "Vp_p= float(2*R1*V_sat)/Rf # in Vp_p\n",
+ "\n",
+ "print \"(ii) : Amplitude of the triangular wave = %0.1f Vp_p\" %Vp_p\n",
+ "\n",
+ "# Part(iii)\n",
+ "Vp_p= (V_sat)-(-V_sat) \n",
+ "print \"(iii) : Amplitude of the square wave = %0.f Vp_p\" %Vp_p"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(i) : Signal Frequency = 1.736 kHz\n",
+ "(ii) : Amplitude of the triangular wave = 2.4 Vp_p\n",
+ "(iii) : Amplitude of the square wave = 20 Vp_p\n"
+ ]
+ }
+ ],
+ "prompt_number": 18
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example : 7.11 - Page No 246"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Given data\n",
+ "C1= 0.01 # in microF\n",
+ "C1=C1*10**-6 # in F\n",
+ "R1=120 # in kohm\n",
+ "R1=R1*10**3 # in ohm\n",
+ "R2=1.2 # in kohm\n",
+ "R2=R2*10**3 # in ohm\n",
+ "R3=6.8 # in kohm\n",
+ "R3=R3*10**3 # in ohm\n",
+ "V_sat= 15 # in volt\n",
+ "# Part(a)\n",
+ "Vp_p= 2*(R2/R3)*V_sat #in volt\n",
+ "print \"(a) : Peak to peak amplitude of triangular wave = %0.3f volt\" %Vp_p\n",
+ "\n",
+ "# Part(b)\n",
+ "fo= R3/(4*R1*C1*R2) #in Hz\n",
+ "print \"(b) : Frequency of triangular wave = %0.2f kHz\" %(fo*10**-3)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "(a) : Peak to peak amplitude of triangular wave = 5.294 volt\n",
+ "(b) : Frequency of triangular wave = 1.18 kHz\n"
+ ]
+ }
+ ],
+ "prompt_number": 32
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example : 7.12 - Page No 249"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "from math import log\n",
+ "# Given data\n",
+ "T= 100 # in micro sec\n",
+ "T=T*10**-6 #in se\n",
+ "V_sat= 12 # in volt\n",
+ "V1= 0.7 # in volt\n",
+ "V= 0.7 # in volt\n",
+ "V_D1= V \n",
+ "V_D2=V_D1 \n",
+ "C1= 0.1 # in microF\n",
+ "C1=C1*10**-6 # in F\n",
+ "Bita1= 0.1 \n",
+ "# Formula T= R3*C1*log((1+V1/V_sat)/(1-Bita1))\n",
+ "R3= T/(C1*log((1+V1/V_sat)/(1-Bita1))) # in ohm\n",
+ "print \"Value of R3 = %0.3f kohm (Standard value 6.8 kohm)\" %(R3*10**-3)"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "Value of R3 = 6.171 kohm (Standard value 6.8 kohm)\n"
+ ]
+ }
+ ],
+ "prompt_number": 21
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file