summaryrefslogtreecommitdiff
path: root/Linear_Integrated_Circuits/Chapter5.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Linear_Integrated_Circuits/Chapter5.ipynb')
-rwxr-xr-xLinear_Integrated_Circuits/Chapter5.ipynb215
1 files changed, 215 insertions, 0 deletions
diff --git a/Linear_Integrated_Circuits/Chapter5.ipynb b/Linear_Integrated_Circuits/Chapter5.ipynb
new file mode 100755
index 00000000..29abc9bb
--- /dev/null
+++ b/Linear_Integrated_Circuits/Chapter5.ipynb
@@ -0,0 +1,215 @@
+{
+ "metadata": {
+ "name": ""
+ },
+ "nbformat": 3,
+ "nbformat_minor": 0,
+ "worksheets": [
+ {
+ "cells": [
+ {
+ "cell_type": "heading",
+ "level": 1,
+ "metadata": {},
+ "source": [
+ "Chapter 5 : Comparators and Waveform generators"
+ ]
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.1 Page No.212"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "%matplotlib inline\n",
+ "import matplotlib.pylab as plt\n",
+ "import numpy as np\n",
+ "# Given Data \n",
+ "\n",
+ "Vz1 = 9.0\n",
+ "Vz2 = 9.0\n",
+ "\n",
+ "x = np.array([-1, -1, -1, -1, -1, 0, 1, 1, 1, 1, 1]) \n",
+ "plt.plot(9.7*x)\n",
+ "plt.xlabel('Time')\n",
+ "plt.ylabel('Voltage')\n",
+ "plt.show()\n",
+ "\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "metadata": {},
+ "output_type": "display_data",
+ "png": "iVBORw0KGgoAAAANSUhEUgAAAYgAAAEPCAYAAABY9lNGAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGq9JREFUeJzt3XtwVPXdx/HPkqyKEhQobAIJRAMhFwKJIFgtdbmEmyQP\nVsaS4AMFtZ1xaKvoM9LWjtGn5dKOU8XWTuvoDJ2hQLXChlvKgxCwQga5ldSAgUgshCQFMRQCCknO\n88eWVCDkxu7+ztl9v2Z2YJcl+UyG5MP5nt/5HZdlWZYAALhKF9MBAAD2REEAAFpEQQAAWkRBAABa\nREEAAFpEQQAAWmS0IObOnSuPx6OMjIzm106fPq3s7GwlJydrwoQJqqurM5gQACKX0YKYM2eOioqK\nrnht8eLFys7OVnl5ucaNG6fFixcbSgcAkc1l+kK5yspK5eTkqLS0VJKUkpKibdu2yePxqKamRl6v\nV4cOHTIZEQAiku3OQdTW1srj8UiSPB6PamtrDScCgMhku4L4KpfLJZfLZToGAESkaNMBrnZ5tBQb\nG6vq6mr16dPnmvcMHDhQFRUVBtIBgHMlJSXpyJEj7X6/7Y4gcnNztWzZMknSsmXLNG3atGveU1FR\nIcuyeFiWXnjhBeMZ7PLga8HXgq9F64+O/sfa6BFEXl6etm3bplOnTikhIUEvvfSSFixYoEceeURv\nvvmmEhMT9ac//clkRMBx6uulrVuls2dNJ7GHHTv4WnSW0YJYsWJFi69v3rw5xEmA8OHzSYcPS7m5\nppPYQ0yM1Lev6RTOZLtzEOgYr9drOoJt8LXw8/mkmTO9euYZ00nsYfhwr/in4ffssx17v/HrIDrD\n5XLJgbGBoPvyS8njkT7+2P8r8FUd/dlpu5PUADpv61YpPZ1yQGBQEEAY8fmk//ov0ykQLhgxAWGi\nqUlKSJC2bJEGDzadBnbEiAmIUHv2+FfsUA4IFAoCCBOMlxBoFAQQJtaskVrYeADoNAoCCAMVFdKp\nU9KoUaaTIJxQEEAY8PmknBypC9/RCCD+OQFhgPMPCAaWuQIOd+qUlJQk1dRIXbuaTgM7Y5krEGHW\nrZPGjaMcEHgUBOBwPh+rlxAcjJgAB7twQYqNlT75ROrVy3Qa2B0jJiCCbN4sZWVRDggOCgJwMFYv\nIZgYMQEO1djov1Pazp3SXXeZTgMnYMQERIiSEqlPH8oBwUNBAA7F6iUEGwUBOBTnHxBsFATgQIcO\nSfX10vDhppMgnFEQgAP5fFJuruRymU6CcEZBAA7EeAmhwDJXwGFqaqSUFKm2Vrr5ZtNp4CQscwXC\n3Nq10qRJlAOCj4IAHIbxEkKFERPgIOfO+a+e/sc/pDvuMJ0GTsOICQhjmzb57ztNOSAUKAjAQdas\nYbyE0GHEBDhEQ4P/3g/79kkJCabTwIkYMQFh6q9/lQYMoBwQOhQE4BCsXkKoURCAA1gWBYHQoyAA\nB/j736WmJmnoUNNJEEkoCMABLq9eYnM+hBIFATgANweCCSxzBWzu+HFp2DD/5nzR0abTwMlY5gqE\nmcJCacoUygGhR0EANsfqJZjCiAmwsTNn/BfGVVVJMTGm08DpGDEBYWTjRukb36AcYAYFAdgYq5dg\nEiMmwKYuXpQ8HqmsTIqLM50G4YARExAmtm2TBg+mHGAOBQHYFKuXYBorqwEburw531/+YjoJIplt\nCyIxMVHdu3dXVFSU3G63du3aZToSEDJ790pdu0qpqaaTIJLZtiBcLpeKi4vVs2dP01GAkLs8XmJz\nPphk63MQrFRCpOL8A+zAtgXhcrk0fvx4jRgxQm+88YbpOEDIHD0qVVdLX/+66SSIdLYdMX3wwQeK\ni4vTyZMnlZ2drZSUFI0ePbr5zwsKCpp/7/V65fV6Qx8SCILCQmnqVCkqynQSOF1xcbGKi4s7/fcd\ncaHciy++qG7duumZZ56RxIVyCG9jxkhPPcWICYEXFhfKnT9/XmfPnpUk1dfXa9OmTcrIyDCcCgi+\n06elPXuk7GzTSQCbjphqa2v10EMPSZIaGho0c+ZMTZgwwXAqIPjWr5fGjpVuvdV0EsAhI6arMWJC\nuJo+XXrwQWnOHNNJEI46+rOTggBs4osv/JvzHTki9e5tOg3CUVicgwAi0ZYt0tChlAPsg4IAbGLN\nGlYuwV4YMQE20NQk9esnbd8uDRpkOg3CFSMmwIF27ZJ69qQcYC8UBGAD7L0EO6IgABugIGBHFARg\nWHm5VFcn3XOP6STAlSgIwDCfT8rNlbrw3Qib4Z8kYBjjJdgVy1wBg/75Tyk5WaqtlW6+2XQahDuW\nuQIOsm6df+dWygF2REEABjFegp0xYgIMqa+X4uKkykr/RXJAsDFiAhzi//7Pv7SVcoBdURCAIYyX\nYHeMmAADGhul2Fhp925pwADTaRApGDEBDrBjh3/3VsoBdkZBAAYwXoITUBBAiFkWNweCM1AQQIiV\nlUkXL0pZWaaTAK2jIIAQuzxecrlMJwFaR0EAIcb5BzgFy1yBEDpxQhoyxL85n9ttOg0iDctcARtb\nu1aaNIlygDNQEEAIsXoJTsKICQiRs2f9F8cdPy517246DSIRIybApoqKpPvuoxzgHBQEECKsXoLT\nMGICQuDSJcnjkUpL/WMmwARGTIANbd8uJSVRDnAWCgIIAZ9PmjbNdAqgY6JNBwDCnWX5C2L9etNJ\ngI7hCAIIsr/9TYqOltLTTScBOoaCAIKMzfngVG0WxMcff6xx48Yp/d///Tlw4IB+9rOfBT0YEC5Y\n3gqnarMgnnjiCS1cuFA33XSTJCkjI0MrVqwIejAgHHz6qfSPf0j33286CdBxbRbE+fPnNWrUqObn\nLpdLbnYaA9qlsFCaOtV/DgJwmjYLonfv3jpy5Ejz83feeUdxcXFBDQWEC8ZLcLI2r6SuqKjQd7/7\nXe3YsUM9evTQnXfeqeXLlysxMTFEEa/FldRwgro6qX9/qbpauu0202mAjv/sbPdWG/X19WpqalJM\nTEynwwUKBQEn+OMfpRUr/PeAAOygoz8725yMvvzyy3JdtT7v9ttv1/Dhw5WZmdnxhECEYLwEp2vz\nCCI/P1+7d+9WTk6OLMvS+vXrlZGRoU8//VTTp0/Xc889F6qszTiCgN19+aV/c76PP/b/CthBwEdM\no0eP1saNG9WtWzdJ0rlz5zRlyhQVFRVp+PDhOnjw4I0l7gQKAnZXVCT97/9KH3xgOgnwHwHfzfXk\nyZPN10BIktvtVm1trW699VbdcsstnUsJhDnGSwgHbZ6DmDlzpkaNGqVp06bJsiytXbtW+fn5qq+v\nV1paWigyAo7S1OS//mHLFtNJgBvTrlVMH374oT744AO5XC7df//9GjFiRCiyXRcjJtjZhx9K//3f\n0qFDppMAVwraMtfa2lp98cUXzSua+vfv37mE7VBUVKSnnnpKjY2Nevzxx685EU5BwM6ef95/B7kl\nS0wnAa4U8HMQhYWFGjRokO666y55vV4lJiZq8uTJNxSyNY2NjZo3b56KiopUVlamFStWGDkRDnTW\nmjXcHAjhoc2CeP7557Vz504lJyfr6NGjeu+9967YmynQdu3apYEDByoxMVFut1szZsyQz+cL2ucD\nAqmiQjp1SgritwgQMm0WhNvt1te+9jU1NTWpsbFRY8aM0e7du4MWqKqqSgkJCc3P4+PjVVVVFbTP\nBwSSzyfl5EhduNMKwkCbq5h69Oihs2fPavTo0Zo5c6b69OnTfE1EMFx91fb1FBQUNP/e6/XK6/UG\nJxDQAT6f9D//YzoF4FdcXKzi4uJO//02T1LX19frlltuUVNTk5YvX65//etfmjlzpnr16tXpT9qa\nkpISFRQUqKioSJK0aNEidenS5YoT1Zykhh2dOiUlJUk1NVLXrqbTANcK+Enql156SVFRUXK73frO\nd76jH/zgB/rFL35xQyFbM2LECB0+fFiVlZW6ePGiVq1apdzc3KB9PiBQ1q2Txo2jHBA+2iyITZs2\nXfPahg0bghJGkqKjo/XrX/9aEydOVFpamr797W8rNTU1aJ8PCBSfj9VLCC/XHTH99re/1euvv66K\nigolJSU1v3727Fndf//9Wr58echCXo0RE+zmwgUpNlb65BMpSNNX4IYF7EK5M2fO6PPPP9eCBQu0\nZMmS5g8aExMTtPMP7UVBwG7WrpVeflm6gfOBQNAFrCBOnz4tSbIsq8WVRT179uxkxBtHQcBuHn9c\nSk+Xnn7adBLg+gJWEImJidddcupyufTJJ590LmEAUBCwk8ZGqW9faedO6a67TKcBri9gd5SrrKwM\nRB4g7JWUSH36UA4IP21eKCdJPp9P27dvl8vl0gMPPKCcnJxg5wIcg9VLCFdtLnNdsGCBli5dqvT0\ndKWmpmrp0qX60Y9+FIpsgCNwcyCEqzavpM7IyND+/fsVFRUlyb/bamZmpkpLS0MSsCWcg4BdHDok\njR8vHTsmtXOXGMCYgF9J7XK5VFdX1/y8rq6u3fslAeHO55NycykHhKfrnoN48sknlZ+frx//+Me6\n++67NWbMGFmWpW3btmnx4sWhzAjYls8nvfCC6RRAcFx3xPTKK69o1apVOnHihMaPH68BAwYoMzNT\nI0eOVGxsbKhzXoERE+ygpkZKSZFqa6WbbzadBmhbwG85WllZqZUrV2rlypW6cOGC8vPzlZeXp+Tk\n5BsO21kUBOzgjTek996TVq40nQRon6Ddk1qS9u3bpzlz5qi0tFSNjY2dChgIFATsYOpUaeZMKS/P\ndBKgfQJ+krqhoUGFhYXKz8/XpEmTlJKSonffffeGQgJOd+6ctH27FMTbswPGXfck9aZNm7Ry5Uqt\nX79eI0eOVF5enn7/+98H9W5ygFNs2uS/7/Qdd5hOAgTPdUdMY8eOVV5enh5++GGjG/O1hBETTJs1\nSxo5Upo3z3QSoP2Ceg7CLigImNTQ4L/3w759UkKC6TRA+wX8HASAK/31r9KAAZQDwh8FAXQQey8h\nUlAQQAdYFgWByEFBAB3w979LTU3S0KGmkwDBR0EAHbBmjf/ogc35EAkoCKADuDkQIgnLXIF2On5c\nGjbMvzlfdLvuxQjYC8tcgSApLJSmTKEcEDkoCKCdWL2ESMOICWiHM2f8F8ZVVUkxMabTAJ3DiAkI\ngo0bpW98g3JAZKEggHZg9RIiESMmoA0XL0oej1RWJsXFmU4DdB4jJiDAtm2TBg+mHBB5KAigDaxe\nQqRiRTfQisub8/3lL6aTAKHHEQTQir17pa5dpdRU00mA0KMggFZcHi+xOR8iEQUBtILzD4hkFARw\nHUePStXV0te/bjoJYAYFAVxHYaE0daoUFWU6CWAGBQFcx+WbAwGRiiupgRacPi0lJko1NdKtt5pO\nAwQGV1IDAbB+vTR2LOWAyEZBAC1g9RLAiAm4xhdf+DfnO3JE6t3bdBogcBgxATdoyxZp6FDKAaAg\ngKuwegnwY8QEfEVTk9Svn7R9uzRokOk0QGAxYgJuwK5dUs+elAMgURDAFVi9BPyH7QqioKBA8fHx\nysrKUlZWloqKikxHQgShIID/sN0Ng1wul+bPn6/58+ebjoIIU14u1dVJ99xjOglgD7Y7gpDECWgY\n4fNJublSF1t+VwChZ8tvhddee03Dhg3TY489prq6OtNxECEYLwFXMrLMNTs7WzU1Nde8/vOf/1z3\n3nuvev/7CqWf/vSnqq6u1ptvvnnF+1wul1544YXm516vV16vN6iZEd7++U8pOVmqrZVuvtl0GiAw\niouLVVxc3Pz8xRdf7NCExtbXQVRWVionJ0elpaVXvM51EAi0t96SNm6U3n7bdBIgeBx/HUR1dXXz\n71evXq2MjAyDaRApGC8B17LdEcSsWbO0f/9+uVwu3Xnnnfrd734nj8dzxXs4gkAg1ddLcXFSZaX/\nIjkgXHX0Z6ftCqI9KAgE0po10muvSe+9ZzoJEFyOHzEBocZ4CWgZRxCIaI2NUmystHu3NGCA6TRA\ncHEEAXTAjh3+3VspB+BaFAQiGuMl4PooCEQsy+LmQEBrKAhErLIy6eJFKSvLdBLAnigIRKzL4yWX\ny3QSwJ4oCEQszj8ArWOZKyLSiRPSkCH+zfncbtNpgNBgmSvQDmvXSpMmUQ5AaygIRCRWLwFtY8SE\niHP2rP/iuOPHpe7dTacBQocRE9CGoiLpvvsoB6AtFAQiDquXgPZhxISIcumS5PFIpaX+MRMQSRgx\nAa3Yvl1KSqIcgPagIBBRfD5p2jTTKQBniDYdAAgVy/IXxPr1ppMAzsARBCLG3/4mRUdL6emmkwDO\nQEEgYrA5H9AxFAQiBstbgY5hmSsiwqefSsOHSzU1/jETEIlY5gq0oLBQmjqVcgA6goJARGC8BHQc\nIyaEvbo6qX9/qbpauu0202kAcxgxAVfZsEF64AHKAegoCgJhj/ES0DmMmBDWvvzSvznfxx/7fwUi\nGSMm4Cu2bvVfOU05AB1HQSCsMV4COo8RE8JWU5OUkCBt2SINHmw6DWAeIybg3/bskWJiKAegsygI\nhK01axgvATeCgkDY4uZAwI2hIBCWKiqkU6ekUaNMJwGci4JAWPL5pJwcqQv/woFO49sHYYnlrcCN\nY5krws6pU1JSkv/eD127mk4D2AfLXBHx1q2Txo2jHIAbRUEg7LB6CQgMRkwIKxcuSLGx0iefSL16\nmU4D2AsjJkS0zZulrCzKAQgECgJhhdVLQOAwYkLYaGyU4uKkkhLprrtMpwHshxETIlZJif++D5QD\nEBgUBMIGq5eAwIo28UnffvttFRQU6NChQ/rwww919913N//ZokWL9NZbbykqKkpLly7VhAkTWvwY\n586FKi2cwueTli83nQIIH0YKIiMjQ6tXr9b3vve9K14vKyvTqlWrVFZWpqqqKo0fP17l5eXq0sKG\nOrGxoUprb42NxYqK8pqOYQv9+hVr+HCv6Ri2UFxcLK/XazqGLfC16DwjBZGSktLi6z6fT3l5eXK7\n3UpMTNTAgQO1a9cu3Xvvvde8lyMIv4KCYhUUeE3HsIWCgmK5XF7TMWyBH4r/wdei82x1DuLEiROK\nj49vfh4fH6+qqiqDiQAgcgXtCCI7O1s1NTXXvL5w4ULl5OS0++O4XK5AxgIAtJdlkNfrtfbs2dP8\nfNGiRdaiRYuan0+cONEqKSm55u8lJSVZknjw4MGDRwceSUlJHfoZbeQcxFdZX7loIzc3V/n5+Zo/\nf76qqqp0+PBhjRw58pq/c+TIkVBGBICIZOQcxOrVq5WQkKCSkhI9+OCDmjx5siQpLS1NjzzyiNLS\n0jR58mS9/vrrjJgAwBBHbrUBAAg+W61iao+ioiKlpKRo0KBBWrJkiek4xhw7dkxjxoxRenq6hgwZ\noqVLl5qOZFxjY6OysrI6tAgiHNXV1Wn69OlKTU1VWlqaSkpKTEcyZtGiRUpPT1dGRoby8/P15Zdf\nmo4UMnPnzpXH41FGRkbza6dPn1Z2draSk5M1YcIE1dXVtfoxHFUQjY2NmjdvnoqKilRWVqYVK1bo\n4MGDpmMZ4Xa79atf/UofffSRSkpK9Jvf/CZivxaXvfrqq0pLS4v4seQPf/hDTZkyRQcPHtSBAweU\nmppqOpIRlZWVeuONN7R3716VlpaqsbFRK1euNB0rZObMmaOioqIrXlu8eLGys7NVXl6ucePGafHi\nxa1+DEcVxK5duzRw4EAlJibK7XZrxowZ8vl8pmMZERsbq8zMTElSt27dlJqaqhMnThhOZc7x48e1\nYcMGPf744xG90++ZM2f0/vvva+7cuZKk6Oho3X777YZTmdG9e3e53W6dP39eDQ0NOn/+vPr162c6\nVsiMHj1aPXr0uOK1wsJCzZ49W5I0e/ZsrVmzptWP4aiCqKqqUkJCQvNzLqTzq6ys1L59+zRq1CjT\nUYx5+umn9ctf/rLFbVkiydGjR9W7d2/NmTNHd999t5544gmdP3/edCwjevbsqWeeeUb9+/dX3759\ndccdd2j8+PGmYxlVW1srj8cjSfJ4PKqtrW31/Y76bor00UFLzp07p+nTp+vVV19Vt27dTMcxYt26\nderTp4+ysrIi+uhBkhoaGrR37149+eST2rt3r2677bY2xwjhqqKiQq+88ooqKyt14sQJnTt3TsvZ\nzbGZy+Vq82eqowqiX79+OnbsWPPzY8eOXbE1R6S5dOmSHn74YT366KOaFsH7XO/YsUOFhYW68847\nlZeXpy1btmjWrFmmYxkRHx+v+Ph43XPPPZKk6dOna+/evYZTmbF7927dd9996tWrl6Kjo/Wtb31L\nO3bsMB3LKI/H07zDRXV1tfr06dPq+x1VECNGjNDhw4dVWVmpixcvatWqVcrNzTUdywjLsvTYY48p\nLS1NTz31lOk4Ri1cuFDHjh3T0aNHtXLlSo0dO1Z/+MMfTMcyIjY2VgkJCSovL5ckbd68Wenp6YZT\nmZGSkqKSkhJduHBBlmVp8+bNSktLMx3LqNzcXC1btkyStGzZsrb/Y9mJHTKM2rBhg5WcnGwlJSVZ\nCxcuNB3HmPfff99yuVzWsGHDrMzMTCszM9PauHGj6VjGFRcXWzk5OaZjGLV//35rxIgR1tChQ62H\nHnrIqqurMx3JmCVLllhpaWnWkCFDrFmzZlkXL140HSlkZsyYYcXFxVlut9uKj4+33nrrLeuzzz6z\nxo0bZw0aNMjKzs62Pv/881Y/BhfKAQBa5KgREwAgdCgIAECLKAgAQIsoCABAiygIAECLKAgAQIso\nCKANn332mbKyspSVlaW4uDjFx8crKytLMTExmjdvnul4QNBwHQTQAS+++KJiYmI0f/5801GAoOMI\nAuigy/+nKi4ubr45UUFBgWbPnq1vfvObSkxM1Lvvvqtnn31WQ4cO1eTJk9XQ0CBJ2rNnj7xer0aM\nGKFJkyY174sD2BEFAQTI0aNHtXXrVhUWFurRRx9Vdna2Dhw4oK5du2r9+vW6dOmSvv/97+vPf/6z\ndu/erTlz5ugnP/mJ6djAdUWbDgCEA5fLpcmTJysqKkpDhgxRU1OTJk6cKEnKyMhQZWWlysvL9dFH\nHzXfk6CxsVF9+/Y1GRtoFQUBBMhNN90kSerSpYvcbnfz6126dFFDQ4Msy1J6enrEbzkN52DEBARA\ne9Z6DB48WCdPnlRJSYkk//08ysrKgh0N6DQKAuigy3fh+uodua6+O9fVd+pyuVxyu91655139Nxz\nzykzM1NZWVnauXNn6IIDHcQyVwBAiziCAAC0iIIAALSIggAAtIiCAAC0iIIAALSIggAAtIiCAAC0\niIIAALTo/wG+er38RMFoaAAAAABJRU5ErkJggg==\n",
+ "text": [
+ "<matplotlib.figure.Figure at 0xb659de2c>"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.2 Page No.215"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "# Given data \n",
+ "\n",
+ "R2 = 100.0\n",
+ "R1 = 50.0*10**3\n",
+ "Vref = 0\n",
+ "vi = 1\n",
+ "Vsat = 14.0\n",
+ "\n",
+ "# Solution \n",
+ "\n",
+ "VUT = (R2*Vsat)/(R1+R2)\n",
+ "VLT = (R2*-Vsat)/(R1+R2)\n",
+ "\n",
+ "# Displaying the values\n",
+ "\n",
+ "print \"The value of Upper threshold voltage = \",int(round(VUT*10**3,0)),\"mV\"\n",
+ "print \"The value of Lower threshold voltage = \",int(round(VLT*10**3,0)),\"mV\"\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The value of Upper threshold voltage = 28 mV\n",
+ "The value of Lower threshold voltage = -28 mV\n"
+ ]
+ }
+ ],
+ "prompt_number": 1
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.3 Page No.216"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import numpy as np \n",
+ "# Given data\n",
+ "\n",
+ "VUT = 0\n",
+ "VH = 0.2\n",
+ "f = 10.0**3\n",
+ "# Solution \n",
+ "\n",
+ "VLT = VUT - VH\n",
+ "theta = round(np.arcsin(VH/2),1)\n",
+ "T = 1/f\n",
+ "Ttheta = theta/(2*np.pi*f) \n",
+ "T1 = (T/2) + Ttheta\n",
+ "T2 = (T/2) - Ttheta \n",
+ "\n",
+ "# Displayig the values \n",
+ "\n",
+ "print \"The value of Lower threshold voltage = \",VLT,\"V\"\n",
+ "print \"The value of angle theta = \",theta,\"Radian\"\n",
+ "print \"The value of Timeperiode = \",round(Ttheta*10**3,3),\"ms\"\n",
+ "print \"The value of T1 = \",round(T1*10**3,3),\"ms\"\n",
+ "print \"The value of T2 = \",round(T2*10**3,3),\"ms\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The value of Lower threshold voltage = -0.2 V\n",
+ "The value of angle theta = 0.1 Radian\n",
+ "The value of Timeperiode = 0.016 ms\n",
+ "The value of T1 = 0.516 ms\n",
+ "The value of T2 = 0.484 ms\n"
+ ]
+ }
+ ],
+ "prompt_number": 2
+ },
+ {
+ "cell_type": "heading",
+ "level": 2,
+ "metadata": {},
+ "source": [
+ "Example 5.4 Page No.225 "
+ ]
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [
+ "import math\n",
+ "# Given data \n",
+ "\n",
+ "f = 100\n",
+ "C = 0.1*10**-6\n",
+ "\n",
+ "# Solution \n",
+ "\n",
+ "R = 1/(math.sqrt(6)*2*math.pi*(10**-7)*100)\n",
+ "R1 = 10*R\n",
+ "Rf = 29*R1\n",
+ "\n",
+ "# Displaying the solutions \n",
+ "\n",
+ "print \"The value of R =\",round(R*10**-3,3),\"Kilo Ohms\"\n",
+ "print \"The value of R1 =\",int(round(R1*10**-3,0)),\"Kilo Ohms\"\n",
+ "print \"The value of Rf =\",int(round(Rf*10**-3,0)),\"Kilo Ohms\"\n",
+ "\n"
+ ],
+ "language": "python",
+ "metadata": {},
+ "outputs": [
+ {
+ "output_type": "stream",
+ "stream": "stdout",
+ "text": [
+ "The value of R = 6.497 Kilo Ohms\n",
+ "The value of R1 = 65 Kilo Ohms\n",
+ "The value of Rf = 1884 Kilo Ohms\n"
+ ]
+ }
+ ],
+ "prompt_number": 3
+ },
+ {
+ "cell_type": "code",
+ "collapsed": false,
+ "input": [],
+ "language": "python",
+ "metadata": {},
+ "outputs": []
+ }
+ ],
+ "metadata": {}
+ }
+ ]
+} \ No newline at end of file