diff options
Diffstat (limited to 'Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch5.ipynb')
-rwxr-xr-x | Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch5.ipynb | 1582 |
1 files changed, 0 insertions, 1582 deletions
diff --git a/Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch5.ipynb b/Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch5.ipynb deleted file mode 100755 index 648c0739..00000000 --- a/Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch5.ipynb +++ /dev/null @@ -1,1582 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Chapter 5 Characteristic of Operational Amplifier" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.1 Pg 110" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " the output voltage (Vo) of an op-amp circuit due to input offset voltage (Vos) is = 404.00 mV \n", - " the output voltage (Vo) of an op-amp circuit due to input offset current (Ios) is = 75.00 mV \n", - " the total offset voltage (Vo) of an op-amp circuit is = 479.00 mV \n" - ] - } - ], - "source": [ - "from __future__ import division\n", - "# find the total offset voltage of feedback op-amp\n", - "\n", - "Vos = 4 # #mV # input offset volt\n", - "Ios = 150*10**-3 # # input offset current\n", - "R1 = 5 # #kilo ohm # input resistance\n", - "R2 = 500 # #kilo ohm # feedback resistance\n", - "\n", - "# the output voltage (Vo) of an op-amp circuit due to input offset voltage (Vos) is\n", - "Vo1 = ((R1+R2)/(R1)*Vos) #\n", - "print ' the output voltage (Vo) of an op-amp circuit due to input offset voltage (Vos) is = %0.2f'%Vo1,' mV '#\n", - "\n", - "# the output voltage (Vo) of an op-amp circuit due to input offset current (Ios) is\n", - "Vo2 = R2*Ios #\n", - "print ' the output voltage (Vo) of an op-amp circuit due to input offset current (Ios) is = %0.2f'%Vo2,' mV '#\n", - "\n", - "# the total offset voltage is\n", - "Vo = Vo1+Vo2 #\n", - "print ' the total offset voltage (Vo) of an op-amp circuit is = %0.2f'%Vo,' mV '#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.2 Pg 111" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " the output voltage (Vo) of an op-amp circuit due to input offset voltage (Vos) is = 52.00 mV \n", - " the output voltage (Vo) of an op-amp circuit due to input offset current (Ios) is = 5.00 mV \n", - " the total offset voltage (Vo) of an op-amp circuit is = 57.00 mV \n" - ] - } - ], - "source": [ - "# find the total offset voltage of feedback op-amp\n", - "\n", - "Vos = 2 # #mV # input offset volt\n", - "Ios = 20*10**-3 # # input offset current\n", - "R1 = 10 # #kilo ohm # input resistance\n", - "R2 = 250 # #kilo ohm # feedback resistance\n", - "\n", - "# the output voltage (Vo) of an op-amp circuit due to input offset voltage (Vos) is\n", - "Vo1 = ((R1+R2)/(R1)*Vos) #\n", - "print ' the output voltage (Vo) of an op-amp circuit due to input offset voltage (Vos) is = %0.2f'%Vo1,' mV '#\n", - "\n", - "# the output voltage (Vo) of an op-amp circuit due to input offset current (Ios) is\n", - "Vo2 = R2*Ios #\n", - "print ' the output voltage (Vo) of an op-amp circuit due to input offset current (Ios) is = %0.2f'%Vo2,' mV '#\n", - "\n", - "# the total offset voltage is\n", - "Vo = Vo1+Vo2 #\n", - "print ' the total offset voltage (Vo) of an op-amp circuit is = %0.2f'%Vo,' mV '#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.3 Pg 111" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "the input offset voltage (Vos) of an op-amp circuit is = 1.187 mV \n" - ] - } - ], - "source": [ - "# find the input offset voltage of an op-amp circuit\n", - "\n", - "Vo = 90.2 # #mV # output voltage\n", - "R1 = 2 # #kilo ohm # input resistence\n", - "R2 = 150 # #kilo ohm # feedback resistence\n", - "\n", - "# the input offset voltage (Vos) of an op-amp circuit is defined as\n", - "Vos = ((R1)/(R1+R2)*Vo) #\n", - "print 'the input offset voltage (Vos) of an op-amp circuit is = %0.3f'%Vos,' mV '#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.4 Pg 112" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "the output voltage due to the input offset voltage is = 36.00 mV \n" - ] - } - ], - "source": [ - "# find the output voltage of an op-amp circuit\n", - "\n", - "Vos = 1 # #mV # input offset volt\n", - "R1 = 10 # #kilo ohm # input resistance\n", - "R2 = 350 # #kilo ohm # feedback resistance\n", - "\n", - "# the output voltage due to the input offset voltage of the op-amp circuit is defined by\n", - "Vo1 = ((R1+R2)/(R1)*Vos) #\n", - "print 'the output voltage due to the input offset voltage is = %0.2f'%Vo1,' mV '#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.5 Pg 113" - ] - }, - { - "cell_type": "code", - "execution_count": 46, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "the output voltage of the circuit due to bias current is = 0.11 V \n", - "Bias compensated resistor is = 9.09 kilo ohm \n", - "Bias compensated output voltage is = 0.01 V \n" - ] - } - ], - "source": [ - "# Determine the bias current effect with and without current compensation method\n", - "\n", - "R1 = 10 # #kilo ohm\n", - "R2 = 100 # #kilo ohm\n", - "Ib1 = 1.1*10**-3 #\n", - "Ib2 = 1*10**-3 # \n", - "# the output voltage of the circuit due to bias current is\n", - "Vo = Ib1*R2 #\n", - "print 'the output voltage of the circuit due to bias current is = %0.2f'%Vo,' V '#\n", - "\n", - "#Bias compensated resistor is given by\n", - "R3 = (R1*R2)/(R1+R2) #\n", - "print 'Bias compensated resistor is = %0.2f'%R3,' kilo ohm '#\n", - "\n", - "#Bias compensated output voltage is given by\n", - "Vo = R2*(Ib1-Ib2)#\n", - "print 'Bias compensated output voltage is = %0.2f'%Vo,' V '#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.6 Pg 113" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "the output voltage (Vo) of an op-amp circuit due to input offset current (Ios) is = 80 nA \n" - ] - } - ], - "source": [ - "# find the input offset current of an op-amp circuit\n", - "\n", - "Vo = 12*10**-3# # V # output voltage\n", - "R1 = 2*10**3 # # ohm # input resistence\n", - "R2 = 150*10**3# # ohm # feedback resistence\n", - "\n", - "# the output voltage (Vo) of an op-amp circuit due to input offset current (Ios) is\n", - "# Vo = R2*Ios #\n", - "Ios = Vo/R2 *1e9 # nA\n", - "print 'the output voltage (Vo) of an op-amp circuit due to input offset current (Ios) is = %0.f'%Ios,'nA '#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.7 Pg 114" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The current in the inverting input terminal is = 27.50 nA \n", - "The current in the non-inverting input terminal is= 32.50 nA \n" - ] - } - ], - "source": [ - "# Determine the bias current of inverting and non-inverting\n", - "Ios = 5 # #nA # input offset current\n", - "Ib = 30 # #nA # input bias current\n", - "\n", - "# the input bias current of an op-amp is \n", - "\n", - "#Ib =(Ib1+Ib2)/(2)#\n", - "\n", - "# the offset current Ios is define as\n", - "\n", - "#Ios = abs(Ib1-Ib2) #\n", - "\n", - "Ib1=Ib-(Ios/2)#\n", - "print 'The current in the inverting input terminal is = %0.2f'%Ib1,' nA '#\n", - "\n", - "Ib2 =Ib+(Ios/2)#\n", - "print 'The current in the non-inverting input terminal is= %0.2f'%Ib2,' nA '#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.8 Pg 115" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Feedback transfer function is = 0.01 \n", - "OR 1/Beta is = 100.10 \n", - "Feedback transfer function is = -0.01 \n", - "OR 1/Beta is = -100.10 \n" - ] - } - ], - "source": [ - "#determine the feedback transfer function of an op-amp for the following condition\n", - "# a) When open loop gain of 10**5 and the closed loop gain of 100\n", - "A = 10**5 # # open loop gain\n", - "Af = 100 # #closed loop gain\n", - "# Feedback transfer function is\n", - "beta =(1/Af)-(1/A)#\n", - "print 'Feedback transfer function is = %0.2f'%beta,''#\n", - "beta = 1/beta #\n", - "print 'OR 1/Beta is = %0.2f'%beta,''#\n", - "\n", - "# For an open loop gain of -10**5 and closed loop gain of -100\n", - "A = -10**5 # # open loop gain\n", - "Af = -100 # #closed loop gain\n", - "# Feedback transfer function is\n", - "beta =(1/Af)-(1/A)#\n", - "print 'Feedback transfer function is = %0.2f'%beta,''#\n", - "beta = 1/beta #\n", - "print 'OR 1/Beta is = %0.2f'%beta,''#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.9 Pg 115" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "open loop gain is = 2000.00\n" - ] - } - ], - "source": [ - "#to determine open loop gain\n", - "beta = 0.0120 # # Feedback transfer function\n", - "Af = 80 # #closed loop gain\n", - "A = (Af)/(1-beta*Af) #\n", - "print 'open loop gain is = %0.2f'%A" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.10 Pg 116" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "close loop gain dAf is = 49.78\n", - "the percent change of closed loop gain dAf is = 0.45 %\n" - ] - } - ], - "source": [ - " # To Determine the percent of change in the closed loop gain Af of feedback op-amp circuit\n", - "A = 10**5 # # open loop gain\n", - "Af = 50 # # close loop gain\n", - "beta = 0.01999 # # feedback transfer function\n", - "dA = 10**4 # # the change in the open llop gain \n", - "\n", - "# close loop gain\n", - "dAf = ((dA)/(1+dA*beta))#\n", - "print 'close loop gain dAf is = %0.2f'%dAf\n", - "\n", - "# the percent change of closed loop gain \n", - "dAf = (((Af-dAf)/(Af))*100)#\n", - "print 'the percent change of closed loop gain dAf is = %0.2f'%dAf,'%'#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.11 Pg 116" - ] - }, - { - "cell_type": "code", - "execution_count": 14, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "the feedback transfer function beta is = 0.0199\n", - "the closed loop bandwidth wfH is = 125600\n" - ] - } - ], - "source": [ - "# To Determine the bandwidth of feedback amplifier\n", - "A = 10**4 # # open loop gain\n", - "Af = 50 # # close loop gain\n", - "wH = 628 # #(2*pi*100) # rad/sec # open loop bandwidth\n", - "\n", - "# close loop gain of an op-amp is defined as\n", - "# Af = ((A)/(1+A*beta))# \n", - "\n", - "# the feedback transfer function is given as\n", - "beta = (1/Af)-(1/A) #\n", - "print 'the feedback transfer function beta is = %0.4f'%beta\n", - "\n", - "# closed loop bandwidth\n", - "wfH = wH*(1+beta*A)#\n", - "print 'the closed loop bandwidth wfH is = %0.f'%wfH" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.12 Pg 117" - ] - }, - { - "cell_type": "code", - "execution_count": 17, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "the unity gain bandwidth is = 1e+06 Hz\n", - "the maximum close loop gain ACL is = 50.00 \n" - ] - } - ], - "source": [ - "from __future__ import division\n", - "# To calculate unity gain bandwidth and maximum close loop gain\n", - "A = 10**5 # # open loop gain\n", - "fo = 10 # # Hz # dominant pole frequency\n", - "fdb = 20*10**3 # #Hz # 3-db frequency\n", - "\n", - "# the unity gain bandwidth\n", - "f1 = fo*A #\n", - "print 'the unity gain bandwidth is = %0.e'%f1,'Hz'#\n", - "\n", - "# the maximum close loop gain\n", - "ACL = (f1/fdb) #\n", - "print 'the maximum close loop gain ACL is = %0.2f'%ACL,''#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.13 Pg 117" - ] - }, - { - "cell_type": "code", - "execution_count": 19, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "the unity gain bandwidth is = 60 kHz\n", - "the maximum close loop gain ACL is = 5.00 \n" - ] - } - ], - "source": [ - "# To calculate unity gain bandwidth and maximum close loop gain\n", - "A = 10**3 # # open loop gain\n", - "fo = 60 # # Hz # dominant pole frequency\n", - "fdb = 12*10**3 # #Hz # 3-db frequency\n", - "\n", - "# the unity gain bandwidth\n", - "f1 = fo*A #\n", - "print 'the unity gain bandwidth is = %0.f'%(f1/1e3),'kHz'#\n", - "\n", - "# the maximum close loop gain\n", - "ACL = (f1/fdb) #\n", - "print 'the maximum close loop gain ACL is = %0.2f'%ACL,''#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.14 Pg 118" - ] - }, - { - "cell_type": "code", - "execution_count": 22, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "the dominant pole frequency (fPD) of an op-amp is = 2.5 kHz\n" - ] - } - ], - "source": [ - "# To determine the dominant pole frequency of an op-amp\n", - "Ao = 2*10**5 # # low frequency open loop gain\n", - "f = 5*10**6 # # Hz # pole frequency\n", - "ACL = 100 # # low frequency closed lkoop gain\n", - "p_margin = 80 # \n", - "\n", - "# the dominant pole frequency of an op-amp\n", - "fPD = (ACL)*(f/Ao)/1e3\n", - "print 'the dominant pole frequency (fPD) of an op-amp is = %0.1f'%fPD,'kHz'#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.15 Pg 118" - ] - }, - { - "cell_type": "code", - "execution_count": 23, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FL = 6.37 KHz \n", - "Acom = [ magnitude = 6.3*10**-3 angle = -89.6 degree ]\n", - "Ac = [ magnitude = 0.68 angle = 0.4 degree ]\n" - ] - } - ], - "source": [ - " # Determine the loop gain of compensated network\n", - "C = 0.0025*10**-6 # # farad\n", - "R = 10*10**3 # # ohm\n", - "F = 1*10**6 # # Hz\n", - "Ac1 = 100 # \n", - "angle1 = 90 #\n", - "\n", - "# the close loop gain of a compensated network is defined as\n", - "# Ac = Acl*Acom #\n", - "\n", - "#Acom = 1/(1+%(F/FL))#\n", - "\n", - "FL = 1/(2*3.14*R*C)#\n", - "print 'FL = %0.2f'%(FL/1000),' KHz '# # Round Off Error\n", - "\n", - "# Acom = 1/(1+%j(F/FL))#\n", - "# After putting value of F ,FL we get\n", - "\n", - "# Acom = 1/(1+%j(158.7))# # 1+%j(158.7) Rectangular Form where real part is 1 and imaginary part is 158.7\n", - "\n", - "# After converting rectangular from into polar from we get\n", - " \n", - "print 'Acom = [ magnitude = 6.3*10**-3 angle = -89.6 degree ]'#\n", - "\n", - "# Ac = Ac1*Acom # equation 1\n", - "\n", - "# after putting Ac1 and Acom value in equation 1 we get Ac1 = 100 angle 90 and Acom = 6.3*10**-3 angle = -89.6 \n", - "\n", - "print 'Ac = [ magnitude = 0.68 angle = 0.4 degree ]'#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.16 Pg 119" - ] - }, - { - "cell_type": "code", - "execution_count": 25, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FL = 1.1 KHz \n", - "Acom = [ magnitude = 0.68 angle = -47.7 degree ]\n" - ] - } - ], - "source": [ - "# Determine the loop gain of compensated network\n", - "\n", - "C = 0.01*10**-6 # # farad\n", - "R = 15*10**3 # # ohm\n", - "F = 1*10**6 # # Hz\n", - "\n", - "# the close loop gain of a compensated network is defined as\n", - "# Ac = Acl*Acom #\n", - "\n", - "#Acom = 1/(1+%(F/FL))#\n", - "\n", - "FL = 1/(2*3.14*R*C)#\n", - "print 'FL = %0.1f'%(FL/1000),' KHz '# # Round Off Error\n", - "\n", - "# Acom = 1/(1+%j(F/FL))#\n", - "# After putting value of F ,FL we get\n", - "\n", - "# Acom = 1/(1+%j(0.9))# # 1+%j(0.9) Rectangular Form where real part is 1 and imaginary part is 0.9\n", - "\n", - "# After converting rectangular from into polar from we get\n", - " \n", - "print 'Acom = [ magnitude = 0.68 angle = -47.7 degree ]'#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.17 Pg 120" - ] - }, - { - "cell_type": "code", - "execution_count": 26, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FL = 4.25 KHz \n", - "Acom for F = 0 KHz = [ magnitude = 150 angle = 85 degree ]\n", - "Acom for F = 2 KHz= [ magnitude = 136.4 angle = 64.5 degree ]\n", - "Acom for F = 4 KHz = [ magnitude = 107.14 angle = 41.7 degree ]\n", - "Acom for F = 6 KHz = [ magnitude = 88.24 angle = 30.25 degree ]\n", - "Acom for F = 8 KHz = [ magnitude = 71.4 angle = 23 degree ]\n", - "Acom for F = 10 KHz = [ magnitude = 58.59 angle = 18 degree ]\n", - "Acom for F = 20 KHz = [ magnitude = 31.12 angle = 7 degree ]\n", - "Acom for F = 40 KHz = [ magnitude = 15.9 angle = 1.1 degree ]\n", - "Acom for F = 80 KHz = [ magnitude = 7.9 angle = -2 degree ]\n", - "Acom for F = 100 KHz = [ magnitude = 6.4 angle = -2.6 degree ]\n", - "Acom for F = 200 KHz = [ magnitude = 3.18 angle = -3.8 degree ]\n", - "Acom for F = 400 KHz = [ magnitude = 1.59 angle = -4.4 degree ]\n", - "Acom for F = 800 KHz = [ magnitude = 0.79 angle = -4.7 degree ]\n", - "Acom for F = 1 MHz = [ magnitude = 0.64 angle = -4.7 degree ]\n", - "Acom for F = 1.2 MHz = [ magnitude = 0.52 angle = -4.7 degree ]\n", - "Acom for F = 1.4 MHz = [ magnitude = 0.45 angle = -4.7 degree ]\n", - "Acom for F = 1.6 MHz = [ magnitude = 0.4 angle = -4.7 degree ]\n" - ] - } - ], - "source": [ - "# Determine the loop gain of compensated network\n", - "\n", - "C = 0.5*10**-6 # # farad\n", - "R = 75 # # ohm\n", - "F = 1*10**6 # # Hz\n", - "Ac1 = 150 # \n", - "angle1 = 85 #\n", - "\n", - "# the close loop gain of a compensated network is defined as\n", - "# Ac = Acl*Acom #\n", - "\n", - "#Acom = 1/(1+%(F/FL))#\n", - "\n", - "FL = 1/(2*3.14*R*C)#\n", - "print 'FL = %0.2f'%(FL/1000),' KHz '# # Round Off Error\n", - "\n", - "# Acom = 1/(1+%j(F/FL))#\n", - "\n", - "# After putting value of FL we get\n", - "\n", - "# Acom = 1/(1+%j(F/4.24*10**3))# equation 1\n", - "\n", - "# As F is unknown in above equation 1 \n", - "# by putting different value of F we get Acom for different frequency\n", - "\n", - "\n", - "# If F = 0 KHz\n", - "\n", - "# Acom = 1/(1+%j(0/4.24*10**3))# \n", - "\n", - "# After solving and converting rectangular from into polar from we get\n", - " \n", - "print 'Acom for F = 0 KHz = [ magnitude = 150 angle = 85 degree ]'#\n", - "\n", - "\n", - "# If F = 2 KHz\n", - "\n", - "# Acom = 1/(1+%j(2*10**3/4.24*10**3))# \n", - "\n", - "# After solving and converting rectangular from into polar from we get\n", - " \n", - "print 'Acom for F = 2 KHz= [ magnitude = 136.4 angle = 64.5 degree ]'#\n", - "\n", - "\n", - "# If F = 4 KHz\n", - "\n", - "# Acom = 1/(1+%j(4*10**3/4.24*10**3))# \n", - "\n", - "# After solving and converting rectangular from into polar from we get\n", - " \n", - "print 'Acom for F = 4 KHz = [ magnitude = 107.14 angle = 41.7 degree ]'#\n", - "\n", - "\n", - "# If F = 6 KHz\n", - "\n", - "# Acom = 1/(1+%j(6*10**3/4.24*10**3))# \n", - "\n", - "# After solving and converting rectangular from into polar from we get\n", - " \n", - "print 'Acom for F = 6 KHz = [ magnitude = 88.24 angle = 30.25 degree ]'#\n", - "\n", - "\n", - "\n", - "# If F = 8 KHz\n", - "\n", - "# Acom = 1/(1+%j(8*10**3/4.24*10**3))# \n", - "\n", - "# After solving and converting rectangular from into polar from we get\n", - " \n", - "print 'Acom for F = 8 KHz = [ magnitude = 71.4 angle = 23 degree ]'#\n", - "\n", - "\n", - "\n", - "# If F = 10 KHz\n", - "\n", - "# Acom = 1/(1+%j(10*10**3/4.24*10**3))# \n", - "\n", - "# After solving and converting rectangular from into polar from we get\n", - " \n", - "print 'Acom for F = 10 KHz = [ magnitude = 58.59 angle = 18 degree ]'#\n", - "\n", - "\n", - "\n", - "# If F = 20 KHz\n", - "\n", - "# Acom = 1/(1+%j(20*10**3/4.24*10**3))# \n", - "\n", - "# After solving and converting rectangular from into polar from we get\n", - " \n", - "print 'Acom for F = 20 KHz = [ magnitude = 31.12 angle = 7 degree ]'#\n", - "\n", - "\n", - "\n", - "# If F = 40 KHz\n", - "\n", - "# Acom = 1/(1+%j(40*10**3/4.24*10**3))# \n", - "\n", - "# After solving and converting rectangular from into polar from we get\n", - " \n", - "print 'Acom for F = 40 KHz = [ magnitude = 15.9 angle = 1.1 degree ]'#\n", - "\n", - "\n", - "\n", - "\n", - "\n", - "# If F = 80 KHz\n", - "\n", - "# Acom = 1/(1+%j(80*10**3/4.24*10**3))# \n", - "\n", - "# After solving and converting rectangular from into polar from we get\n", - " \n", - "print 'Acom for F = 80 KHz = [ magnitude = 7.9 angle = -2 degree ]'#\n", - "\n", - "\n", - "\n", - "\n", - "# If F = 100 KHz\n", - "\n", - "# Acom = 1/(1+%j(100*10**3/4.24*10**3))# \n", - "\n", - "# After solving and converting rectangular from into polar from we get\n", - " \n", - "print 'Acom for F = 100 KHz = [ magnitude = 6.4 angle = -2.6 degree ]'#\n", - "\n", - "\n", - "\n", - "\n", - "# If F = 200 KHz\n", - "\n", - "# Acom = 1/(1+%j(200*10**3/4.24*10**3))# \n", - "\n", - "# After solving and converting rectangular from into polar from we get\n", - " \n", - "print 'Acom for F = 200 KHz = [ magnitude = 3.18 angle = -3.8 degree ]'#\n", - "\n", - "\n", - "\n", - "# If F = 400 KHz\n", - "\n", - "# Acom = 1/(1+%j(400*10**3/4.24*10**3))# \n", - "\n", - "# After solving and converting rectangular from into polar from we get\n", - " \n", - "print 'Acom for F = 400 KHz = [ magnitude = 1.59 angle = -4.4 degree ]'#\n", - "\n", - "\n", - "# If F = 800 KHz\n", - "\n", - "# Acom = 1/(1+%j(800*10**3/4.24*10**3))# \n", - "\n", - "# After solving and converting rectangular from into polar from we get\n", - " \n", - "print 'Acom for F = 800 KHz = [ magnitude = 0.79 angle = -4.7 degree ]'#\n", - "\n", - "\n", - "# If F = 1 MHz\n", - "\n", - "# Acom = 1/(1+%j(1*10**6/4.24*10**3))# \n", - "\n", - "# After solving and converting rectangular from into polar from we get\n", - " \n", - "print 'Acom for F = 1 MHz = [ magnitude = 0.64 angle = -4.7 degree ]'#\n", - "\n", - "\n", - "# If F = 1.2 MHz\n", - "\n", - "# Acom = 1/(1+%j(1.2*10**6/4.24*10**3))# \n", - "\n", - "# After solving and converting rectangular from into polar from we get\n", - " \n", - "print 'Acom for F = 1.2 MHz = [ magnitude = 0.52 angle = -4.7 degree ]'#\n", - "\n", - "\n", - "\n", - "# If F = 1.4 MHz\n", - "\n", - "# Acom = 1/(1+%j(1.4*10**6/4.24*10**3))# \n", - "\n", - "# After solving and converting rectangular from into polar from we get\n", - " \n", - "print 'Acom for F = 1.4 MHz = [ magnitude = 0.45 angle = -4.7 degree ]'#\n", - "\n", - "\n", - "# If F = 1.6 MHz\n", - "\n", - "# Acom = 1/(1+%j(1.6*10**6/4.24*10**3))# \n", - "\n", - "# After solving and converting rectangular from into polar from we get\n", - " \n", - "print 'Acom for F = 1.6 MHz = [ magnitude = 0.4 angle = -4.7 degree ]'#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.18 Pg 123" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The compensating resistor value is = 15.92 ohm \n" - ] - } - ], - "source": [ - "# to design compensating network\n", - "fp = 500*10**3 # # pole frequency\n", - "C = 0.02*10**-6 # # F # we choose\n", - "# loop gain of compensated network\n", - "\n", - "# ACom =(1)/(1+j(f/fp))\n", - "# fp = (1/2*pie*R*C)\n", - "R = (1/(2*3.14*C*fp))#\n", - "print 'The compensating resistor value is = %0.2f'%R,' ohm '#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.19 Pg 123" - ] - }, - { - "cell_type": "code", - "execution_count": 20, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FH = 6.37 KHz \n", - "FL = 2.12 KHz \n", - "Acom = [ magnitude = 0.34 angle = -0.24 degree ]\n", - "Ac = [ magnitude = 34 angle = 89.76 degree ]\n" - ] - } - ], - "source": [ - " # Determine the loop gain of compensated network\n", - "\n", - "C = 0.0025*10**-6 # # farad\n", - "R1 = 10*10**3 # # ohm\n", - "R2 = 20*10**3 # # ohm\n", - "F = 1*10**6 # # Hz\n", - "Ac1 = 100 # \n", - "angle1 = 90 #\n", - "\n", - "# the close loop gain of a compensated network is defined as\n", - "\n", - "# Ac = Acl*Acom #\n", - "\n", - "#Acom = (1+%(F/FH))/(1+%(F/FL))#\n", - "\n", - "FH = 1/(2*3.14*R1*C)#\n", - "print 'FH = %0.2f'%(FH/1000),' KHz '# # Round Off Error\n", - "\n", - "\n", - "FL = 1/(2*3.14*(R1+R2)*C)#\n", - "print 'FL = %0.2f'%(FL/1000),' KHz '# # Round Off Error\n", - "\n", - "\n", - "#Acom = (1+%(F/FH))/(1+%(F/FL))#\n", - "\n", - "# After putting value of FH ,FL we get\n", - "\n", - "# Acom = (1+%j(158.7))/(1+%j(471.7) \n", - "\n", - "# After converting rectangular from into polar from we get\n", - " \n", - "print 'Acom = [ magnitude = 0.34 angle = -0.24 degree ]'#\n", - "\n", - "# Ac = Ac1*Acom # equation 1\n", - "\n", - "# after putting Ac1 and Acom value in equation 1 we get Ac1 = 100 angle 90 and Acom = 0.34 angle = -0.24 \n", - "\n", - "print 'Ac = [ magnitude = 34 angle = 89.76 degree ]'#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.20 Pg 124" - ] - }, - { - "cell_type": "code", - "execution_count": 28, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "FH = 1.59 KHz \n", - "FL = 0.64 KHz \n", - "Acom = [magnitude = 0.4] \n" - ] - } - ], - "source": [ - " # Determine the loop gain of compensated network\n", - "C = 0.01*10**-6 # # farad\n", - "R1 = 10*10**3 # # ohm\n", - "R2 = 15*10**3 # # ohm\n", - "F = 1*10**6 # # Hz\n", - "\n", - "\n", - "# the close loop gain of a compensated network is defined as\n", - "\n", - "#Acom = (1+%(F/FH))/(1+%(F/FL))#\n", - "\n", - "FH = 1/(2*3.14*R1*C)#\n", - "print 'FH = %0.2f'%(FH/1000),' KHz '# # Round Off Error\n", - "\n", - "\n", - "FL = 1/(2*3.14*(R1+R2)*C)#\n", - "print 'FL = %0.2f'%(FL/1000),' KHz '# # Round Off Error\n", - "\n", - "\n", - "#Acom = (1+%(F/FH))/(1+%(F/FL))#\n", - "\n", - "# After putting value of FH ,FL we get\n", - "\n", - "# Acom = (1+%j(658.9))/(1+%j(1.56*10**3) \n", - "\n", - "# After converting rectangular from into polar from we get\n", - " \n", - "print 'Acom = [magnitude = 0.4] '#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.21 Pg 125" - ] - }, - { - "cell_type": "code", - "execution_count": 29, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The compensating first resistor R1 value is = 0.80 K ohm \n", - "The compensating second resistor R2 value is = 7.17 K ohm \n" - ] - } - ], - "source": [ - "# to design compensating network\n", - "fH = 10 # #k ohm # break frequency initiated by a zero\n", - "fL = 1 # #k ohm # break frequency initiated by a pole\n", - "C = 0.02# # uF # we choose\n", - "# loop gain of compensated network\n", - "\n", - "# ACom =(1+j(f/fH))/(1+j(f/fL))\n", - "# fH = (1/2*pie*R1*C)\n", - "# fL = (1/2*pie*(R1+R2)*C)\n", - "R1 = (1/(2*3.14*C*fH))#\n", - "print 'The compensating first resistor R1 value is = %0.2f'%R1,' K ohm '#\n", - "R2 = ((1)/(2*3.14*C*fL))-(R1)#\n", - "print 'The compensating second resistor R2 value is = %0.2f'%R2,' K ohm '#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.22 Pg 126" - ] - }, - { - "cell_type": "code", - "execution_count": 31, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The input miller capacitance Cin value is = 10.10 uF \n", - "The output miller capacitance Cout value is = 0.10 uF \n" - ] - } - ], - "source": [ - "# To determine input output miller capacitances\n", - "A = 100 # #gain\n", - "Cm = 0.1 # # uF # compensated capacitor\n", - "\n", - "# the input output miller capacitance are defined as\n", - "Cin = Cm*(A+1)#\n", - "print 'The input miller capacitance Cin value is = %0.2f'%Cin,'uF '#\n", - "Cout = (Cm*((A+1)/A))# \n", - "print 'The output miller capacitance Cout value is = %0.2f'%Cout,'uF '#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.23 Pg 127" - ] - }, - { - "cell_type": "code", - "execution_count": 27, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The input miller capacitance Cin value is = 3.02 uF \n", - "The output miller capacitance Cout value is = 0.02 uF \n", - "The initiated frequency of miller compensating network by pole is = 7.96 KHz \n" - ] - } - ], - "source": [ - "from math import pi\n", - "# To determine input output miller capacitances\n", - "A = 150 # #gain\n", - "Cm = 0.02 # # uF # compensated capacitor\n", - "\n", - "# the input output miller capacitance are defined as\n", - "Cin = Cm*(A+1)#\n", - "print 'The input miller capacitance Cin value is = %0.2f'%Cin,'uF '#\n", - "Cout = (Cm*((A+1)/A))# \n", - "print 'The output miller capacitance Cout value is = %0.2f'%Cout,'uF '#\n", - "\n", - "# In the miller compensating network input capacitance introduce a pole . The initiated frequency of miller compensating network by pole is define as\n", - "\n", - "# fp = 1/(2*pi*R*Cin)#\n", - "R = 1 # # K ohm\n", - "fp = 1/(2*pi*R*Cout)#\n", - "print 'The initiated frequency of miller compensating network by pole is = %0.2f'%fp,' KHz '#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.24 Pg 128" - ] - }, - { - "cell_type": "code", - "execution_count": 41, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "the slew rate of an op-amp is = 17.58 V/u sec \n", - "The compansated capacitance value is = 1.12 pF \n" - ] - } - ], - "source": [ - "# To determine the slew rate of an op-amp\n", - "f = 1 # # MHz # unity frequency\n", - "Ic = 1*10**-6 # # uA # capacitor current\n", - "Vt = 0.7 # # V # threshold voltage\n", - "\n", - "# the slew rate of an op-amp is defined as\n", - "# Slew rate = (dVo/dt)\n", - "Slewrate = 8*3.14*Vt*f #\n", - "print 'the slew rate of an op-amp is = %0.2f'%Slewrate,' V/u sec '#\n", - "\n", - "# The compansated capacitance Cm is\n", - "gm = (Ic/Vt)#\n", - "Cm = (gm/4*3.14*f)*1e6 # pF\n", - "print 'The compansated capacitance value is = %0.2f'%Cm,'pF '#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.25 Pg 129" - ] - }, - { - "cell_type": "code", - "execution_count": 42, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Cut -off frequency of an op-amp is = 5.00 Hz \n" - ] - } - ], - "source": [ - " # To determine the cut off frequency of an op-amp\n", - "f = 1*10**3 # # Hz # unity frequency\n", - "Av = 200 # # V/mV # dc gain\n", - "\n", - "# the unity gain frequency of an op-amp is defined as\n", - "# f = Av*fc #\n", - "\n", - "# cut off frequency\n", - "fc = (f/Av)#\n", - "print 'Cut -off frequency of an op-amp is = %0.2f'%fc,' Hz '#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.26 Pg 129" - ] - }, - { - "cell_type": "code", - "execution_count": 43, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "the closed loop gain ACL is = 35.00 \n", - "The output gain factor K is = 0.88 V\n", - "The maximum frequency of an op-amp fmax = 145.59 KHz\n" - ] - } - ], - "source": [ - "# To find the maximum frequency of input signal in op-amp circuit\n", - "Vin = 25*10**-3 # # V # input voltage\n", - "Slewrate = 0.8/10**-6 # # V/uV # Slew rate of an op-amp\n", - "R2 = 350*10**3 # # ohm # feedback resistance\n", - "R1 = 10*10**3 # # ohm # input resistance\n", - "\n", - "# the closed loop gain\n", - "# ACL = (mod (Vo/Vin)) = (mod(R2/R1))#\n", - "ACL = abs(R2/R1)#\n", - "print 'the closed loop gain ACL is = %0.2f'%ACL,' '#\n", - "\n", - "# the output gain factor K is given as\n", - "K = ACL*Vin #\n", - "print 'The output gain factor K is = %0.2f'%K,' V'#\n", - "\n", - "# the maximum frequency of an op-amp is\n", - "wmax = (Slewrate/K)#\n", - "fmax = wmax/(2*3.14)#\n", - "print 'The maximum frequency of an op-amp fmax = %0.2f'%(fmax/1000),' KHz'#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.27 Pg 129" - ] - }, - { - "cell_type": "code", - "execution_count": 44, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "the closed loop gain ACL is = 24.00 \n", - "The output gain factor K is = 0.36 V\n", - "The wmax is = 2.22 *10**6 rad/sec\n" - ] - } - ], - "source": [ - "# To find the maximum frequency of op-amp circuit\n", - "Vin = 0.015 # # V # input voltage\n", - "Slewrate = 0.8 # # V/uV # Slew rate of an op-amp\n", - "R2 = 120*10**3 # # ohm # feedback resistance\n", - "R1 = 5*10**3 # # ohm # input resistance\n", - "\n", - "# the closed loop gain\n", - "# ACL = (mod (Vo/Vin)) = (mod(R2/R1))#\n", - "ACL = abs(R2/R1)#\n", - "print 'the closed loop gain ACL is = %0.2f'%ACL,' '#\n", - "\n", - "# the output gain factor K is given as\n", - "K = ACL*Vin #\n", - "print 'The output gain factor K is = %0.2f'%K,' V'#\n", - "\n", - "# the maximum frequency of an op-amp is\n", - "wmax = (Slewrate/K)#\n", - "print 'The wmax is = %0.2f'%wmax,'*10**6 rad/sec'# # *10**6 because Slewrate is V/uV \n", - "\n", - "# the signal frequency may be w = 500*10**3 rad/sec that is less than the maximum frequency value" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.28 Pg 130" - ] - }, - { - "cell_type": "code", - "execution_count": 49, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "the unity frequency f is = 568.70 kHz \n", - "The compansated capacitance Cm value is = 0.2 nF \n" - ] - } - ], - "source": [ - " # To determine the compensated capacitance of an op-amp\n", - "Slewrate = 10 # # V/u sec\n", - "Ic = 1*10**-3 # # mA # capacitor current\n", - "Vt = 0.7 # # V # threshold voltage\n", - "\n", - "# the slew rate of an op-amp is defined as\n", - "# Slew rate = (dVo/dt)\n", - "# the unity frequency f is\n", - "f =(Slewrate/(8*3.14*Vt))#\n", - "f = f*10**6# # *10**6 because Slew rate is V/uV \n", - "print 'the unity frequency f is = %0.2f'%(f/1e3),'kHz '#\n", - "\n", - "# The compansated capacitance Cm is\n", - "gm = (Ic/Vt)#\n", - "Cm = (gm)/(4*3.14*f)*1e9 #\n", - "print 'The compansated capacitance Cm value is = %0.1f'%Cm,'nF '#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.29 Pg 131" - ] - }, - { - "cell_type": "code", - "execution_count": 51, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "the Slew rate of an op-amp is = 0.50 V/u sec\n" - ] - } - ], - "source": [ - " # To find Slew rate of an op-amp\n", - "Iq = 15 # # uA # bias current\n", - "Cm = 30 # # pF # internal frequency compensated capacitor\n", - "Slewrate = (Iq/Cm)\n", - "print 'the Slew rate of an op-amp is = %0.2f'%Slewrate,' V/u sec'#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.30 Pg 131" - ] - }, - { - "cell_type": "code", - "execution_count": 52, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "the Slew rate of an op-amp is = 0.68 V/u sec\n" - ] - } - ], - "source": [ - "# To find Slew rate of an op-amp\n", - "Iq = 21 # # uA # bias current\n", - "Cm = 31 # # pF # internal frequency compensated capacitor\n", - "Slewrate = (Iq/Cm)#\n", - "print 'the Slew rate of an op-amp is = %0.2f'%Slewrate,' V/u sec'#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.31 Pg 131" - ] - }, - { - "cell_type": "code", - "execution_count": 56, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The full power bandwidth FPBW is = 8.12 kHz \n", - "The 3-db frequency or small signal band width f3db is = 10 kHz \n" - ] - } - ], - "source": [ - " # To determine full power and small signal bandwidth of an op-amp with unity gain\n", - "f = 100*10**6 # # Hz unity gain bandwidth\n", - "ACL = 10**4 # # maximum closed loop gain\n", - "Slewrate = 0.51 # # V/u sec\n", - "Vp = 10 # # V peak volt\n", - "\n", - "# The full power bandwidth\n", - "FPBW = (Slewrate/(2*3.14*Vp))#\n", - "FPBW = FPBW*10**6 # # *10**6 because Slew rate is V/uV \n", - "print 'The full power bandwidth FPBW is = %0.2f'%(FPBW/1e3),'kHz '#\n", - "\n", - "# the 3-db frequency or small signal band width \n", - "f3db = (f/ACL)#\n", - "print 'The 3-db frequency or small signal band width f3db is = %0.f'%(f3db/1e3),'kHz '#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.32 Pg 132" - ] - }, - { - "cell_type": "code", - "execution_count": 59, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "The full power bandwidth FPBW is = 8.12 kHz \n", - "The 3-db frequency or small signal band width f3db is = 10 kHz \n" - ] - } - ], - "source": [ - "# To determine full power and small signal bandwidth of an op-amp with unity gain\n", - "f = 100*10**6 # # Hz unity gain bandwidth\n", - "ACL = 10**4 # # maximum closed loop gain\n", - "Slewrate = 0.51 # # V/u sec\n", - "Vp = 10 # # V peak volt\n", - "\n", - "# The full power bandwidth\n", - "FPBW = (Slewrate/(2*3.14*Vp))#\n", - "FPBW = FPBW*10**6 # # *10**6 because Slew rate is V/uV \n", - "print 'The full power bandwidth FPBW is = %0.2f'%(FPBW/1e3),'kHz '#\n", - "\n", - "# the 3-db frequency or small signal band width \n", - "f3db = (f/ACL)#\n", - "print 'The 3-db frequency or small signal band width f3db is = %0.f'%(f3db/1e3),'kHz '#" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5.33 Pg 132" - ] - }, - { - "cell_type": "code", - "execution_count": 60, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "the Slew rate of an op-amp is = 0.31 V/u sec \n", - "The closed loop gain ACL is = 83.33 \n" - ] - } - ], - "source": [ - "# To find Slew rate and closed loop gain of an op-amp\n", - "fu = 1*10**6 # # Hz # unity gain bandwidth\n", - "fmax = 5*10**3 # # KHz # full power bandwidth\n", - "F3db = 12*10**3 # # Hz # small signal bandwidth\n", - "Vp = 10 # # V # peak volt\n", - "\n", - "# the full power bandwidth of an op-amp\n", - "# fmax=FPBW = (Slew rate/2*3.14*Vp)#\n", - "Slewrate = 2*3.14*Vp*fmax#\n", - "Slewrate = Slewrate*(10**-6)# # *10**-6 because Slewrate is V/u \n", - "print 'the Slew rate of an op-amp is = %0.2f'%Slewrate,' V/u sec '#\n", - "\n", - "# # the 3-db frequency or small signal band width \n", - "#f3db = (f/ACL)#\n", - "#the closed loop gain ACL\n", - "ACL = fu/F3db #\n", - "print 'The closed loop gain ACL is = %0.2f'%ACL,' '#" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.9" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} |