summaryrefslogtreecommitdiff
path: root/Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch4_1.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch4_1.ipynb')
-rw-r--r--Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch4_1.ipynb396
1 files changed, 396 insertions, 0 deletions
diff --git a/Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch4_1.ipynb b/Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch4_1.ipynb
new file mode 100644
index 00000000..a40b05f0
--- /dev/null
+++ b/Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch4_1.ipynb
@@ -0,0 +1,396 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4 Operational Amplifier"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.1 Pg 79"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " closed loop gain of an op-amp is = 35.00\n",
+ " the input impedance Zin = 10.00 kohm \n",
+ " the output impedance Z0 = 0.020 ohm \n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "# For an op-amp circuit find a) closed loop gain Acl b) input impedance Zin c) output impedance Zo\n",
+ "ro = 85 # # ohm\n",
+ "A = 150*10**3 # # ohm\n",
+ "R2 = 350*10**3 # # ohm # Feedback resistance\n",
+ "R1 = 10*10**3 # # ohm # Input resistance\n",
+ "\n",
+ "# a) closed loop gain\n",
+ "# ACL = abs(Vo/Vin) = abs(R2/R1)\n",
+ "ACL = abs(R2/R1) #\n",
+ "print ' closed loop gain of an op-amp is = %0.2f'%ACL# # 1/beta = ACL\n",
+ "beta = (1/ACL) #\n",
+ "\n",
+ "# b) the input impedance Zin\n",
+ "Zin = R1 #\n",
+ "print ' the input impedance Zin = %0.2f'%(Zin/1e3),'kohm '#\n",
+ "\n",
+ "# c0 the output impedance Z0\n",
+ "Z0 = (ro)/(1+(beta*A))#\n",
+ "print ' the output impedance Z0 = %0.3f'%Z0,' ohm '#"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.2 Pg 80"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " The difference voltage is = 10.00 V \n",
+ " The open loop gain is = 2.00 \n"
+ ]
+ }
+ ],
+ "source": [
+ "# Determine the differece voltage and open loop gain of an op-amp\n",
+ "V1 = -5 # # volt # input voltage\n",
+ "V2 = 5 # # volt\n",
+ "Vo = 20 # #volt # output voltage\n",
+ "\n",
+ "# the difference voltage is given by \n",
+ "Vd = V2-V1 #\n",
+ "print ' The difference voltage is = %0.2f'%Vd,' V '\n",
+ "\n",
+ "# open loop gain \n",
+ "A = (Vo/Vd)#\n",
+ "print ' The open loop gain is = %0.2f'%A,' '"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.3 Pg 80"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " The difference voltage is = 5.00 V \n",
+ " The open loop gain is = 4.00 \n"
+ ]
+ }
+ ],
+ "source": [
+ "# Determine the differece voltage and open loop gain of an op-amp\n",
+ "V1 = -5 # # volt # input voltage\n",
+ "V2 = 0 # # volt # GND\n",
+ "Vo = 20 # #volt # output voltage\n",
+ "\n",
+ "# the difference voltage is given by \n",
+ "Vd = V2-V1 #\n",
+ "print ' The difference voltage is = %0.2f'%Vd,' V '\n",
+ "\n",
+ "# open loop gain \n",
+ "A = (Vo/Vd)#\n",
+ "print ' The open loop gain is = %0.2f'%A,' '"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.4 Pg 81"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " The difference voltage is = 5.00 V \n",
+ " The open loop gain is = 4.00 \n"
+ ]
+ }
+ ],
+ "source": [
+ "# Determine the differece voltage and open loop gain of an op-amp\n",
+ "V1 = 0 # # volt # input voltage # GND\n",
+ "V2 = 5 # # volt \n",
+ "Vo = 20 # #volt # output voltage\n",
+ "\n",
+ "# the difference voltage is given by \n",
+ "Vd = V2-V1 #\n",
+ "print ' The difference voltage is = %0.2f'%Vd,' V '\n",
+ "\n",
+ "# open loop gain \n",
+ "A = (Vo/Vd)#\n",
+ "print ' The open loop gain is = %0.2f'%A,' '"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.5 Pg 81"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " The difference voltage is = -10.00 V \n",
+ " The open loop gain is = 2.00 \n"
+ ]
+ }
+ ],
+ "source": [
+ "# Determine the differece voltage and open loop gain of an op-amp\n",
+ "V1 = 5 # # volt # input voltage # GND\n",
+ "V2 = -5 # # volt \n",
+ "Vo = -20 # #volt # output voltage\n",
+ "\n",
+ "# the difference voltage is given by \n",
+ "Vd = V2-V1 #\n",
+ "print ' The difference voltage is = %0.2f'%Vd,' V '\n",
+ "\n",
+ "# open loop gain \n",
+ "A = (Vo/Vd)#\n",
+ "print ' The open loop gain is = %0.2f'%A,' '"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.6 Pg 82"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The Closed loop gain of an inverting op-amp is = -2.50 \n",
+ "The |Ac| Closed loop gain of an inverting op-amp is = 2.50 \n",
+ "The output voltage of an inverting op-amp is = -25.00 V \n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "# To find closed loop gain and output voltage Vo of an inverting op-amp\n",
+ "R1 = 10 # #kilo ohm # input resistance\n",
+ "R2 = 25 # # kilo ohm # feedback resistance\n",
+ "Vin = 10 # #volt # input voltage\n",
+ "\n",
+ "# Closed loop gain of an inverting op-amp\n",
+ "Ac = -(R2/R1) #\n",
+ "print 'The Closed loop gain of an inverting op-amp is = %0.2f'%Ac,' '\n",
+ "Ac = abs(Ac)#\n",
+ "print 'The |Ac| Closed loop gain of an inverting op-amp is = %0.2f'%Ac,' '\n",
+ "\n",
+ "# the output voltage of an inverting op-amp\n",
+ "Vo = -(R2/R1)*Vin #\n",
+ "print 'The output voltage of an inverting op-amp is = %0.2f'%Vo,' V '"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.7 Pg 82"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 7,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " The Closed loop gain of an non-inverting op-amp is = 3.50 \n",
+ " The output voltage of an non-inverting op-amp is = 35.00 V \n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "# To find closed loop gain and output voltage Vo of an non-inverting op-amp\n",
+ "R1 = 10 # #kilo ohm # input resistance\n",
+ "R2 = 25 # # kilo ohm # feedback resistance\n",
+ "Vin = 10 # #volt # input voltage\n",
+ "\n",
+ "# Closed loop gain of an non-inverting op-amp\n",
+ "Ac = 1+(R2/R1) #\n",
+ "Ac = abs(Ac)#\n",
+ "print ' The Closed loop gain of an non-inverting op-amp is = %0.2f'%Ac,' '\n",
+ "\n",
+ "# the output voltage of an inverting op-amp\n",
+ "Vo = (1+R2/R1)*Vin #\n",
+ "print ' The output voltage of an non-inverting op-amp is = %0.2f'%Vo,' V '"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.8 Pg 83"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 8,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "The closed loop gain of differntial op-amp is = 2.50 \n",
+ "The output voltage of an non-inverting op-amp is= 50.00 V \n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "# to find out closed loop gain and output voltage Vo\n",
+ "R1 = 10 # #kilo ohm # input resistance\n",
+ "R3 = 10 # #kilo ohm # input resistance\n",
+ "R2 = 25 # # kilo ohm # feedback resistance\n",
+ "R4 = 25 # # kilo ohm # feedback resistance\n",
+ "Vin2 = 10 # #volt # input voltage\n",
+ "Vin1 = -10 # #volt # input voltage\n",
+ "\n",
+ "# closed loop gain of differntial op-amp is given by\n",
+ "Ac = (R2/R1) #\n",
+ "Ac = abs(Ac)# \n",
+ "print 'The closed loop gain of differntial op-amp is = %0.2f'%Ac,' '\n",
+ "\n",
+ "# the output voltage of an non-inverting op-amp is given by\n",
+ "Vo = (R2/R1)*(Vin2-Vin1) #\n",
+ "print 'The output voltage of an non-inverting op-amp is= %0.2f'%Vo,' V '"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Example 4.9 Pg 84"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 9,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ " The upper voltage is = 2.86 V \n",
+ " The lower voltage is = -2.86 V \n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "# Determine the non-inverting input voltage\n",
+ "R1 = 10 # #kilo ohm # input resistance\n",
+ "R2 = 25 # #kilo ohm # feedback resistance\n",
+ "Voh = 10 # # volt #output voltage\n",
+ "Vol = -10 # # volt # output voltage\n",
+ "\n",
+ "# upper voltage\n",
+ "V = (R1/(R1+R2)*Voh) #\n",
+ "print ' The upper voltage is = %0.2f'%V,' V '\n",
+ "\n",
+ "# Lower voltage\n",
+ "V = (R1/(R1+R2)*Vol) #\n",
+ "print ' The lower voltage is = %0.2f'%V,' V '"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}