summaryrefslogtreecommitdiff
path: root/Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch14.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch14.ipynb')
-rwxr-xr-xLinear_Integrated_Circuit_by_M._S._Sivakumar/Ch14.ipynb636
1 files changed, 0 insertions, 636 deletions
diff --git a/Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch14.ipynb b/Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch14.ipynb
deleted file mode 100755
index d64bea33..00000000
--- a/Linear_Integrated_Circuit_by_M._S._Sivakumar/Ch14.ipynb
+++ /dev/null
@@ -1,636 +0,0 @@
-{
- "cells": [
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "# Chapter 14 Special Function ICs"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 14.1 Pg 415"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 1,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "the output voltage of the adjustable voltage regulator is = 22.25 V \n"
- ]
- }
- ],
- "source": [
- "from __future__ import division\n",
- "\n",
- "# to determine the regulated voltage \n",
- "R1 = 250 # #ohm \n",
- "R2 = 2500 # # ohm \n",
- "Vref = 2 # #V #reference voltage\n",
- "Iadj = 100*10**-6# # A # adjacent current\n",
- "\n",
- "#the output voltage of the adjustable voltage regulator is defined by\n",
- "Vo = (Vref*((R2/R1)+1)+(Iadj*R2)) #\n",
- "print 'the output voltage of the adjustable voltage regulator is = %0.2f'%Vo,' V '"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 14.2 Pg 416"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 2,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "the total power dissipation of the IC is = 25.00 mA \n"
- ]
- }
- ],
- "source": [
- "# to determine the current drawn from the dual power supply \n",
- "V = 10 # # V\n",
- "P = 500 # # mW\n",
- "\n",
- "# we assume that each power supply provides half power supply to IC\n",
- "P1 = (P/2)#\n",
- "\n",
- "# the total power dissipation of the IC\n",
- "# P1 = V*I #\n",
- "I = P1/V #\n",
- "print 'the total power dissipation of the IC is = %0.2f'%I,' mA '"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 14.3 Pg 416"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 3,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "the output voltage of the adjustable voltage regulator is = 7.50 V \n"
- ]
- }
- ],
- "source": [
- "# to determine the output voltage \n",
- "R1 = 100*10**3 # #ohm \n",
- "R2 = 500*10**3 # # ohm \n",
- "Vref = 1.25 # #V #reference voltage\n",
- "\n",
- "#the output voltage of the adjustable voltage regulator is defined by\n",
- "Vo = Vref*(R1+R2)/R1#\n",
- "print 'the output voltage of the adjustable voltage regulator is = %0.2f'%Vo,' V '"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 14.4 Pg 417"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 5,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The output voltage of switching regulator circuit is = 3.50 V \n"
- ]
- }
- ],
- "source": [
- "# determine the output voltage of the switching regulator circuit\n",
- "d = 0.7 # # duty cycle\n",
- "Vin = 5 # # V # input voltage\n",
- "\n",
- "# The output voltage of switching regulator circuit is given by\n",
- "Vo = d*Vin #\n",
- "print 'The output voltage of switching regulator circuit is = %0.2f'%Vo,' V '"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 14.5 Pg 417"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The output voltage of switching regulator circuit is = 0.96 \n"
- ]
- }
- ],
- "source": [
- "# determine the duty cycle of the switching regulator circuit\n",
- "Vo = 4.8 # # V # output voltage\n",
- "Vin = 5 # # V # input voltage\n",
- "\n",
- "# The output voltage of switching regulator circuit is given by\n",
- "# Vo = d*Vin #\n",
- "\n",
- "# Duty cycle is given as\n",
- "d =Vo/Vin #\n",
- "print 'The output voltage of switching regulator circuit is = %0.2f'%d,' '"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 14.6 Pg 418"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 7,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The output voltage of switching regulator circuit is = 0.50 \n"
- ]
- }
- ],
- "source": [
- "# determine the duty cycle of the switching regulator circuit\n",
- "T =120 # #msec # total pulse time\n",
- "# T = ton + toff #\n",
- "ton = T/2 #\n",
- "\n",
- "# The duty cycle of switching regulator circuit is given by\n",
- "d = ton/T#\n",
- "print 'The output voltage of switching regulator circuit is = %0.2f'%d,' '"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 14.7 Pg 418"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 8,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The output voltage of switching regulator circuit is = 0.67 \n"
- ]
- }
- ],
- "source": [
- "# determine the duty cycle of the switching regulator circuit\n",
- "ton = 12 # #msec # on time of pulse\n",
- "# ton = 2*toff # given\n",
- "# T = ton + toff #\n",
- "toff = ton/2 #\n",
- "T = ton+toff # # total time\n",
- "\n",
- "# The duty cycle of switching regulator circuit is given by\n",
- "d = ton/T#\n",
- "print 'The output voltage of switching regulator circuit is = %0.2f'%d,' '"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 14.8 Pg 419"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 9,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The emitter bias voltage is = 3.80 V \n",
- "The output voltage of the IC LM380 is = 7.90 V \n"
- ]
- }
- ],
- "source": [
- " # determine the output voltage of the audio power amplifier IC LM380\n",
- "Vcc = 12 # # V\n",
- "Ic3 = 12*10**-6 # # A # collector current of the transistor Q3\n",
- "Ic4 = 12*10**-6 # # A # collector current of the transistor Q4\n",
- "R11 = 25*10**3 # # ohm\n",
- "R12 = 25*10**3 # # ohm\n",
- "\n",
- "# the collector current of Q3 is defined as\n",
- " # Ic3 = (Vcc-3*Veb)/(R11+R12)#\n",
- "Veb = (Vcc-(R11+R12)*Ic3)/3 #\n",
- "print 'The emitter bias voltage is = %0.2f'%Veb,' V '\n",
- "\n",
- "# the output voltage of the IC LM380\n",
- "Vo = (1/2)*Vcc+(1/2)*Veb#\n",
- "print 'The output voltage of the IC LM380 is = %0.2f'%Vo,' V '"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 14.9 Pg 420"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 10,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The emitter bias voltage is = 3.33 V \n",
- "The output voltage of the IC LM380 is = 6.67 V \n"
- ]
- }
- ],
- "source": [
- "# determine the output voltage of the audio power amplifier IC LM380\n",
- "Vcc = 10 # # V\n",
- "Ic3 = 0.01*10**-6 # # A # collector current of the transistor Q3\n",
- "Ic4 = 0.01*10**-6 # # A # collector current of the transistor Q4\n",
- "R11 = 25*10**3 # # ohm\n",
- "R12 = 25*10**3 # # ohm\n",
- "\n",
- "# the collector current of Q3 is defined as\n",
- " # Ic3 = (Vcc-3*Veb)/(R11+R12)#\n",
- "Veb = (Vcc-(R11+R12)*Ic3)/3 #\n",
- "print 'The emitter bias voltage is = %0.2f'%Veb,' V '\n",
- "\n",
- "# the output voltage of the IC LM380\n",
- "Vo = (1/2)*Vcc+(1/2)*Veb#\n",
- "print 'The output voltage of the IC LM380 is = %0.2f'%Vo,' V '"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 14.10 Pg 421"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 6,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The emitter resistor of Q3 is = 52.00 ohm ( at temperature 25 degree celsius) \n",
- "The trans conductance of transistor is = 38.5 mA/V \n",
- "The base emitter resistor rbe is = 1.30 K ohm \n",
- "The emitter capacitor Ce = 7.65 pF \n",
- "The value of resistance RL is = 264.55 ohm \n",
- "The pole frequency fa is = 601.91 M Hz \n",
- "The pole frequency fb is = 1073.74 M Hz \n",
- "The pole frequency fc is = 3060.67 M Hz \n",
- "Hence fa is a dominant pole frequency \n"
- ]
- }
- ],
- "source": [
- "from numpy import inf\n",
- "from math import sqrt, pi\n",
- "# Design a video amplifier of IC 1550 circuit\n",
- "Vcc = 12 # # V\n",
- "Av = -10 #\n",
- "Vagc = 0 # # at bandwidth of 20 MHz\n",
- "hfe = 50 # # forward emitter parameter\n",
- "rbb = 25 # # ohm # base resistor\n",
- "Cs = 1*10**-12 # # F # source capacitor\n",
- "Cl = 1*10**-12 # # F # load capacitor\n",
- "Ie1 = 1*10**-3 # # A # emitter current of Q1\n",
- "f = 1000*10**6 # # Hz\n",
- "fT = 800*10**6 # # Hz\n",
- "Vt = 52*10**-3 #\n",
- "Vt1 = 0.026 #\n",
- "\n",
- "# When Vagc =0 the transistor Q2 is cut-off and the collector current of transistor Q2 flow through the transistor Q3\n",
- "# i.e Ic1=Ie1=Ie3\n",
- "Ie3 = 1*10**-3 # # A # emitter current of Q3\n",
- "Ic1 = 1*10**-3 # # A # collector current of the transistor Q1\n",
- "\n",
- "# it indicates that the emitter current of Q2 is zero Ie2 = 0 then the emitter resistor of Q2 is infinite\n",
- "\n",
- "re2 = inf #\n",
- "\n",
- "# emitter resistor of Q3 \n",
- "re3 = (Vt/Ie1)#\n",
- "print 'The emitter resistor of Q3 is = %0.2f'%re3,' ohm ( at temperature 25 degree celsius) '\n",
- "\n",
- "# the trans conductance of transistor is\n",
- "gm = (Ie1/Vt1)#\n",
- "print 'The trans conductance of transistor is = %0.1f'%(gm*1000),' mA/V ' # Round Off Error\n",
- "\n",
- "# the base emitter resistor rbe\n",
- "rbe = (hfe/gm)#\n",
- "print 'The base emitter resistor rbe is = %0.2f'%(rbe/1000),' K ohm ' # Round Off Error\n",
- "\n",
- "# the emitter capacitor Ce \n",
- "\n",
- "Ce = (gm/(2*pi*fT))#\n",
- "print 'The emitter capacitor Ce = %0.2f'%(Ce*1e12),' pF ' # Round Off Error\n",
- "\n",
- "# the voltage gain of video amplifier is\n",
- "# Av = (Vo/Vin) #\n",
- "# Av = -((alpha3*gm)/(rbb*re3)*((1/rbb)+(1/rbe)+sCe)*((1/re2)+(1/re3)+sC3)*((1/Rl)+(s(Cs+Cl)))) \n",
- " # At Avgc = 0 i.e s=0 in the above Av equation\n",
- "alpha3 = 1 #\n",
- "s = 0 #\n",
- "# Rl = -((alpha3*gm)/(rbb*re3)*(((1/rbb)+(1/rbe))*((1/re2)+(1/re3))*(Av)))# \n",
- "\n",
- "# After solving above equation for Rl We get Rl Equation as\n",
- "Rl = 10/(37.8*10**-3)#\n",
- "print 'The value of resistance RL is = %0.2f'%Rl,' ohm '\n",
- "\n",
- "# there are three poles present in the transfer function of video amplifier each pole generate one 3-db frequency \n",
- "Rl = 675 #\n",
- "# fa = 1/(2*pi*Rl*(Cs+Cl))#\n",
- "# after putting value of Rl ,Cs and Cl we get\n",
- "fa = 1/(2*3.14*264.55*1*10**-12)#\n",
- "print 'The pole frequency fa is = %0.2f'%(fa*10**-3/1000),' M Hz '# Round Off Error\n",
- "\n",
- "\n",
- "#fb = 1/(2*pi*Ce*((rbb*rbe)/(rbb+rbe)))#\n",
- "# after putting value of Ce rbb and rbe we get\n",
- "fb = 1/(2*pi*6.05*10**-12*24.5)#\n",
- "print 'The pole frequency fb is = %0.2f'%(fb*10**-3/1000),' M Hz '\n",
- "\n",
- "fc = 1/(2*pi*Cs*re3)#\n",
- "print 'The pole frequency fc is = %0.2f'%(fc*10**-3/1000),' M Hz '\n",
- "\n",
- "print 'Hence fa is a dominant pole frequency '"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 14.11 Pg 423"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 13,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The emitter resistor of Q3 is = 52.00 ohm \n",
- "The trans conductance of transistor is = 38.5 mA/V \n",
- "The base emitter resistor rbe is = 1.3 kohm \n",
- "The emitter capacitor is = 6.12 pF \n",
- "The value of resistance RL is = 5.00 ohm \n",
- "The pole frequency fa is = 600.58 MHz \n",
- "The pole frequency fb is = 1060.00 MHz \n",
- "The pole frequency fc is = 3060.67 MHz \n",
- "Hence fa is a dominant pole frequency \n"
- ]
- }
- ],
- "source": [
- "# Design a video amplifier of IC 1550 circuit\n",
- "Vcc = 12 # # V\n",
- "Av = -10 #\n",
- "Vagc = 0 # # at bandwidth of 20 MHz\n",
- "hfe = 50 # # forward emitter parameter\n",
- "rbb = 25 # # ohm # base resistor\n",
- "Cs = 1*10**-12 # # F # source capacitor\n",
- "Cl = 1*10**-12 # # F # load capacitor\n",
- "Ie1 = 1*10**-3 # # A # emitter current of Q1\n",
- "f = 1000*10**6 # # Hz\n",
- "Vt = 52*10**-3 #\n",
- "Vt1 = 0.026 #\n",
- "\n",
- "# When Vagc =0 the transistor Q2 is cut-off and the collector current of transistor Q2 flow through the transistor Q3\n",
- "# i.e Ic1=Ie1=Ie3\n",
- "Ie3 = 1*10**-3 # # A # emitter current of Q3\n",
- "Ic1 = 1*10**-3 # # A # collector current of the transistor Q1\n",
- "\n",
- "# it indicates that the emitter current of Q2 is zero Ie2 = 0 then the emitter resistor of Q2 is infinite\n",
- "re2 = inf #\n",
- "\n",
- "# emitter resistor of Q3 \n",
- "re3 = (Vt/Ie1)#\n",
- "print 'The emitter resistor of Q3 is = %0.2f'%re3,' ohm '\n",
- "\n",
- "# the trans conductance of transistor is\n",
- "gm = (Ie1/Vt1)#\n",
- "print 'The trans conductance of transistor is = %0.1f'%(gm*1e3),' mA/V '\n",
- "\n",
- "# the base emitter resistor rbe\n",
- "rbe = (hfe/gm)#\n",
- "print 'The base emitter resistor rbe is = %0.1f'%(rbe/1e3),' kohm '\n",
- "\n",
- "# the emitter capacitor Ce \n",
- "Ce = (gm/(2*pi*f))#\n",
- "print 'The emitter capacitor is = %0.2f'%(Ce*1e12),' pF '\n",
- "\n",
- "# the voltage gain of video amplifier is\n",
- "# Av = (Vo/Vin) #\n",
- "# Av = -((alpha3*gm)/(rbb*re3)*((1/rbb)+(1/rbe)+sCe)*((1/re2)+(1/re3)+sC3)*((1/Rl)+(s(Cs+Cl)))) \n",
- " # At Avgc = 0 i.e s=0 in the above Av equation\n",
- "alpha3 = 1 #\n",
- "s = 0 #\n",
- "Av =-10 #\n",
- "Rl = -((alpha3*gm)/((rbb*re3)*(((1/rbb)+(1/rbe))*((1/re2)+(1/re3))*(Av))))# \n",
- "Rl = (1/Rl)#\n",
- "print 'The value of resistance RL is = %0.2f'%Rl,' ohm '\n",
- "\n",
- "# there are three poles present in the transfer function of video amplifier each pole generate one 3-db frequency \n",
- "Rl = 265\n",
- "fa = 1/(2*pi*Rl*(Cs))/1e6#\n",
- "print 'The pole frequency fa is = %0.2f'%fa,'MHz '\n",
- "\n",
- "\n",
- "fb = 1/(2*pi*Ce*((rbb*rbe)/(rbb+rbe)))/1e6\n",
- "print 'The pole frequency fb is = %0.2f'%fb,'MHz '\n",
- "\n",
- "fc = 1/(2*pi*Cs*re3)/1e6\n",
- "print 'The pole frequency fc is = %0.2f'%fc,'MHz '\n",
- "\n",
- "print 'Hence fa is a dominant pole frequency '"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 14.12 Pg 425"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 18,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The input current is = 0.50 mA \n",
- "The output of an op-amp is = 27.50 V \n"
- ]
- }
- ],
- "source": [
- "# Determine the output voltage of an isolation amplifier IC ISO100\n",
- "Vin = 5.0 # # V\n",
- "Rin = 10*10**3 # \n",
- "Rf = 55*10**3 # # ohm # feedback resistance\n",
- "\n",
- "# the input voltage of an amplifier 1\n",
- "# Vin = Rin*Iin\n",
- "Iin = Vin/Rin # \n",
- "print 'The input current is = %0.2f'%(Iin*1e3),'mA '\n",
- "\n",
- "# In isolation amplifier ISO 100 the input current Iin is equal to the output current Iout , but both are opposite in direction\n",
- "# Iin = -Iout\n",
- "# the output of an op-amp\n",
- "# Vo = -Rf*Iout\n",
- "Vo = Rf*Iin#\n",
- "print 'The output of an op-amp is = %0.2f'%Vo,' V '"
- ]
- },
- {
- "cell_type": "markdown",
- "metadata": {},
- "source": [
- "## Example 14.13 Pg 426"
- ]
- },
- {
- "cell_type": "code",
- "execution_count": 24,
- "metadata": {
- "collapsed": false
- },
- "outputs": [
- {
- "name": "stdout",
- "output_type": "stream",
- "text": [
- "The input current is = 12 mA \n",
- "The output of an op-amp is = 204 V \n"
- ]
- }
- ],
- "source": [
- "# Determine the output voltage of an isolation amplifier IC ISO100\n",
- "Vin = 12.0 # # V\n",
- "Rin = 1*10**3 # \n",
- "Rf = 17*10**3 # # ohm # feedback resistance\n",
- "\n",
- "# the input voltage of an amplifier 1\n",
- "# Vin = Rin*Iin\n",
- "Iin = Vin/Rin # \n",
- "print 'The input current is = %0.f'%(Iin*1e3),'mA '\n",
- "\n",
- "# In isolation amplifier ISO 100 the input current Iin is equal to the output current Iout , but both are opposite in direction\n",
- "# Iin = -Iout\n",
- "# the output of an op-amp\n",
- "# Vo = -Rf*Iout\n",
- "Vo = Rf*Iin#\n",
- "print 'The output of an op-amp is = %0.f'%Vo,' V '"
- ]
- }
- ],
- "metadata": {
- "kernelspec": {
- "display_name": "Python 2",
- "language": "python",
- "name": "python2"
- },
- "language_info": {
- "codemirror_mode": {
- "name": "ipython",
- "version": 2
- },
- "file_extension": ".py",
- "mimetype": "text/x-python",
- "name": "python",
- "nbconvert_exporter": "python",
- "pygments_lexer": "ipython2",
- "version": "2.7.9"
- }
- },
- "nbformat": 4,
- "nbformat_minor": 0
-}