summaryrefslogtreecommitdiff
path: root/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter10.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter10.ipynb')
-rw-r--r--[-rwxr-xr-x]Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter10.ipynb26
1 files changed, 13 insertions, 13 deletions
diff --git a/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter10.ipynb b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter10.ipynb
index 1c137a08..24d02247 100755..100644
--- a/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter10.ipynb
+++ b/Linear_Algebra_by_K._Hoffman_and_R._Kunze/Chapter10.ipynb
@@ -46,7 +46,7 @@
}
],
"source": [
- "import numpy as np\n",
+ "from numpy import array,transpose\n",
"print 'a = [x1 x2]'\n",
"print 'b = [y1 y2]'\n",
"print 'f(a,b) = x1*y1 + x1*y2 + x2*y1 + x2*y2'\n",
@@ -54,12 +54,12 @@
"print '[x1 x2] * |1 1| * |y1|'\n",
"print ' |1 1| |y2|'\n",
"print 'So the matrix of f in standard order basis B = {e1,e2} is:'\n",
- "fb = np.array([[1, 1],[1, 1]])\n",
+ "fb = array([[1, 1],[1, 1]])\n",
"print '[f]B = \\n',fb\n",
- "P = np.array([[1 ,1],[-1, 1]])\n",
+ "P = array([[1 ,1],[-1, 1]])\n",
"print 'P = \\n',P\n",
"print 'Thus, [f]B'' = P''*[f]B*P'\n",
- "fb1 = np.transpose(P) * fb * P\n",
+ "fb1 = transpose(P) * fb * P\n",
"print '[f]B'' = \\n',fb1"
]
},
@@ -81,23 +81,23 @@
"name": "stdout",
"output_type": "stream",
"text": [
- "n = 56.0\n",
- "a = 410.0\n",
- "b = 70.0\n",
- "f(a,b) = 28700.0\n",
+ "n = 24.0\n",
+ "a = 100.0\n",
+ "b = 40.0\n",
+ "f(a,b) = 4000.0\n",
"f is non-degenerate billinear form on R**n.\n"
]
}
],
"source": [
- "import numpy as np\n",
- "n = round(np.random.randint(2,90))\n",
- "a = round(np.random.randint(1,n) * 10)#\n",
- "b = round(np.random.randint(1,n) * 10)#\n",
+ "from numpy import random,transpose\n",
+ "n = round(random.randint(2,90))\n",
+ "a = round(random.randint(1,n) * 10)#\n",
+ "b = round(random.randint(1,n) * 10)#\n",
"print 'n = ',n\n",
"print 'a = ',a\n",
"print 'b = ',b\n",
- "f = a * np.transpose(b)\n",
+ "f = a * transpose(b)\n",
"print 'f(a,b) = ',f\n",
"print 'f is non-degenerate billinear form on R**n.'\n",
"#end"