diff options
Diffstat (limited to 'Linear_Algebra_And_Its_Applications_by_G._Strang/CHAPTER2.ipynb')
-rw-r--r-- | Linear_Algebra_And_Its_Applications_by_G._Strang/CHAPTER2.ipynb | 476 |
1 files changed, 476 insertions, 0 deletions
diff --git a/Linear_Algebra_And_Its_Applications_by_G._Strang/CHAPTER2.ipynb b/Linear_Algebra_And_Its_Applications_by_G._Strang/CHAPTER2.ipynb new file mode 100644 index 00000000..9d2e4638 --- /dev/null +++ b/Linear_Algebra_And_Its_Applications_by_G._Strang/CHAPTER2.ipynb @@ -0,0 +1,476 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Chapter2 Vector Spaces" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:2.1.1 Pg: 70" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Consider all vectors in R**2 whose components are positive or zero\n", + "The subset is first Quadrant of x-y plane,the co-ordinates satisfy x>=0 and y>=0.It is not a subspace.\n", + "If the Vector= [1, 1]\n", + "Taking a scalar,c=-1\n", + "c*v= [-1, -1]\n", + "It lies in third Quadrant instead of first,Hence violating the rule(ii).\n" + ] + } + ], + "source": [ + "print 'Consider all vectors in R**2 whose components are positive or zero'\n", + "print 'The subset is first Quadrant of x-y plane,the co-ordinates satisfy x>=0 and y>=0.It is not a subspace.'\n", + "v=[1,1]\n", + "print 'If the Vector=',v\n", + "print 'Taking a scalar,c=-1'\n", + "c=-1# #scalar\n", + "print 'c*v=',[c*vv for vv in v]\n", + "print 'It lies in third Quadrant instead of first,Hence violating the rule(ii).'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:2.3.2 Pg: 92" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Given matrix:\n", + "[[ 1 3 3 2]\n", + " [ 2 6 9 5]\n", + " [-1 -3 3 0]]\n", + "C2->C2-3*C1\n", + "[[ 1 0 3 2]\n", + " [ 2 0 9 5]\n", + " [-1 0 3 0]]\n", + "Here,C2=3*C1,Therefore the columns are linearly dependent.\n", + "R3->R3-2*R2+5*R1\n", + "[[1 0 3 2]\n", + " [2 0 9 5]\n", + " [0 0 0 0]]\n", + "Here R3=R3-2*R2+5*R1,therefore the rows are linearly dependent.\n" + ] + } + ], + "source": [ + "from numpy import mat\n", + "A=mat([[1, 3 ,3 ,2],[2, 6, 9, 5],[-1, -3, 3, 0]])\n", + "print 'Given matrix:'\n", + "print A\n", + "B=A\n", + "print 'C2->C2-3*C1'\n", + "A[:,1]=A[:,1]-3*A[:,0]\n", + "print A\n", + "print 'Here,C2=3*C1,Therefore the columns are linearly dependent.'\n", + "print 'R3->R3-2*R2+5*R1'\n", + "B[2,:]=B[2,:]-2*B[1,:]+5*B[0,:]\n", + "print B\n", + "print 'Here R3=R3-2*R2+5*R1,therefore the rows are linearly dependent.'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:2.3.3 Pg: " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A=\n", + "[[3 4 2]\n", + " [0 1 5]\n", + " [0 0 2]]\n", + "The columns of the triangular matrix are linearly independent,it has no zeros on the diagonal\n" + ] + } + ], + "source": [ + "from numpy import mat\n", + "A=mat([[3, 4 ,2],[0, 1 ,5],[0, 0, 2]])\n", + "print 'A=\\n',A\n", + "print 'The columns of the triangular matrix are linearly independent,it has no zeros on the diagonal'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:2.3.4 Pg: 93" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "The columns of the nxn identity matrix are independent.\n", + "I=\n", + "[[ 1. 0. 0. 0.]\n", + " [ 0. 1. 0. 0.]\n", + " [ 0. 0. 1. 0.]\n", + " [ 0. 0. 0. 1.]]\n" + ] + } + ], + "source": [ + "from numpy import eye\n", + "print 'The columns of the nxn identity matrix are independent.'\n", + "n=4 # size for identity matrix\n", + "I=eye(n)\n", + "print 'I=\\n',I" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:2.3.5 Pg: 93" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Three columns in R2 cannot be independent.\n", + "Given matrix:\n", + "[[1 2 1]\n", + " [1 2 3]]\n", + "U=\n", + "[[ 1. 2. 1.]\n", + " [ 0. 0. 2.]]\n", + "If c3 is 1 ,then back-substitution Uc=0 gives c2=-1,c1=1,With these three weights,the first column minus the second plus the third equals zero ,therefore linearly dependent.\n" + ] + } + ], + "source": [ + "from scipy.linalg import lu\n", + "from numpy import mat\n", + "print 'Three columns in R2 cannot be independent.'\n", + "A=mat([[1, 2, 1],[1, 2, 3]])\n", + "print 'Given matrix:\\n',A\n", + "L=lu(A)[1]\n", + "U=lu(A)[2]\n", + "print 'U=\\n',U\n", + "print 'If c3 is 1 ,then back-substitution Uc=0 gives c2=-1,c1=1,With these three weights,the first column minus the second plus the third equals zero ,therefore linearly dependent.'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:2.3.9 Pg: 96" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "These four columns span the column space U,but they are not independent.\n", + "U=\n", + "[[1 3 3 2]\n", + " [0 0 3 1]\n", + " [0 0 0 0]]\n", + "The columns that contains pivots (here 1st & 3rd) are a basis for the column space. These columns are independent, and it is easy to see that they span the space.In fact,the column space of U is just the x-y plane withinn R3. C(U) is not the same as the column space C(A) before elimination-but the number of independent columns did not change.\n" + ] + } + ], + "source": [ + "from numpy import mat\n", + "print 'These four columns span the column space U,but they are not independent.'\n", + "U=mat([[1, 3 ,3, 2],[0, 0 ,3 ,1],[0, 0, 0, 0]])\n", + "print 'U=\\n',U\n", + "print 'The columns that contains pivots (here 1st & 3rd) are a basis for the column space. These columns are independent, and it is easy to see that they span the space.In fact,the column space of U is just the x-y plane withinn R3. C(U) is not the same as the column space C(A) before elimination-but the number of independent columns did not change.'" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:2.4.1 Pg: 107" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A=\n", + "[[1 2]\n", + " [3 6]]\n", + "m= 2\n", + "n= 2\n", + "rank= 1\n", + "Column space= [[1]\n", + " [3]]\n", + "Null space=\n", + "[[-0.89442719]\n", + " [ 0.4472136 ]]\n", + "Row space=\n", + "[[1]\n", + " [2]]\n", + "Left null sapce=\n", + "[[-0.9486833 ]\n", + " [ 0.31622777]]\n" + ] + } + ], + "source": [ + "from numpy import mat,shape\n", + "from sympy import Matrix\n", + "from scipy import linalg, matrix, compress,transpose\n", + "A=mat([[1 ,2],[3, 6]])\n", + "print 'A=\\n',A\n", + "m=shape(A)[0]\n", + "n=shape(A)[1]\n", + "print 'm=',m\n", + "print 'n=',n\n", + "v=Matrix(A).rref()[0]\n", + "pivot=Matrix(A).rref()[1]\n", + "r=len(pivot)\n", + "print 'rank=',r\n", + "cs=A[:,r-1]\n", + "print 'Column space=',cs\n", + "\n", + "\n", + "def kernel(A, eps=1e-15):\n", + " u, s, vh = linalg.svd(A)\n", + " null_mask = (s <= eps)\n", + " null_space = compress(null_mask, vh, axis=0)\n", + " return transpose(null_space)\n", + "A=mat([[1 ,2],[3, 6]])\n", + "\n", + "ns=kernel(A)\n", + "print 'Null space=\\n',ns\n", + "v=mat(v)\n", + "rs=transpose(v[range(0,r),:])\n", + "print 'Row space=\\n',rs\n", + "lns=kernel(transpose(A))\n", + "print 'Left null sapce=\\n',lns" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:2.4.2 Pg: 108" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "A=\n", + "[[4 0 0]\n", + " [0 5 0]]\n", + "m= 2\n", + "n= 3\n", + "rank= 2\n", + "since m=r=2 ,there exists a right inverse .\n", + "Best right inverse=\n", + "[[ 0.25 0. ]\n", + " [ 0. 0.2 ]\n", + " [ 0. 0. ]]\n" + ] + } + ], + "source": [ + "from numpy import mat,shape,rank,transpose\n", + "A=mat([[4, 0, 0],[0, 5, 0]])\n", + "print 'A=\\n',A\n", + "m=shape(A)[0]\n", + "n=shape(A)[1]\n", + "print 'm=',m\n", + "print 'n=',n\n", + "r=rank(A)\n", + "print 'rank=',r\n", + "print 'since m=r=2 ,there exists a right inverse .'\n", + "C=transpose(A)*(A*transpose(A))**-1\n", + "print 'Best right inverse=\\n',C" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Ex:2.5.1 Pg: 121" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "collapsed": false + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Applying current law Ay=f at nodes 1,2,3:\n", + "A' = \n", + "[[-1 0 -1 0 -1]\n", + " [ 1 -1 0 0 0]\n", + " [ 0 1 1 -1 0]]\n", + "[[ 0. ]\n", + " [ 0. ]\n", + " [ 0.59010697]\n", + " [ 0. ]\n", + " [ 0. ]\n", + " [ 0. ]\n", + " [ 0.55757785]\n", + " [ 0. ]]\n", + "The other equation is inv(C)y+Ax=b.The block form of the two equations is:\n", + "[[ 1.37051236 0. 0. 0. 0. -1.\n", + " 1. 0. ]\n", + " [ 0. 1.54412147 0. 0. 0. 0.\n", + " -1. 1. ]\n", + " [ 0. 0. 9.1949881 0. 0. -1.\n", + " 0. 1. ]\n", + " [ 0. 0. 0. 13.91590014 0. 0.\n", + " 0. -1. ]\n", + " [ 0. 0. 0. 0. 2.46587381 -1.\n", + " 0. 0. ]\n", + " [ -1. 0. -1. 0. -1. 0.\n", + " 0. 0. ]\n", + " [ 1. -1. 0. 0. 0. 0.\n", + " 0. 0. ]\n", + " [ 0. 1. 1. -1. 0. 0.\n", + " 0. 0. ]]\n", + "X=\n", + "[['y1']\n", + " ['y2']\n", + " ['y3']\n", + " ['y4']\n", + " ['y5']\n", + " ['x1']\n", + " ['x2']\n", + " ['x3']]\n", + "X= [[ 0.3717052 ]\n", + " [-0.18587265]\n", + " [ 0.08836592]\n", + " [-0.09750673]\n", + " [-0.46007112]\n", + " [-1.13447733]\n", + " [-1.6439039 ]\n", + " [-1.35689395]]\n" + ] + } + ], + "source": [ + "from numpy import mat,transpose,diag,zeros,random,vstack,hstack,linalg\n", + "print 'Applying current law A''y=f at nodes 1,2,3:'\n", + "A=mat([[-1, 1 ,0],[0, -1, 1],[ -1, 0 ,1],[0, 0 ,-1],[-1, 0, 0]])\n", + "print \"A' = \\n\",transpose(A)\n", + "C=diag(random.rand(5))# #Taking some values for the resistances.\\\n", + "b=zeros([5,1])\n", + "b[2,0]=random.rand(1)[0]##Taking some value of the battery.\n", + "f=zeros([3,1])\n", + "f[1,0]=random.rand(1)[0]##Taking some value of the current source.\n", + "B=vstack([b,f])#[b]#f]\n", + "print B\n", + "print 'The other equation is inv(C)y+Ax=b.The block form of the two equations is:'\n", + "#C=[C**-1 A],[np.transpose(A),np.zeros([3,3])]\n", + "C1=hstack([linalg.inv(C),A])\n", + "C2=hstack([transpose(A),zeros([3,3])])\n", + "C=vstack([C1,C2])\n", + "print C\n", + "X=mat([['y1'],['y2'],['y3'],['y4'],['y5'],['x1'],['x2'],['x3']])\n", + "print \"X=\\n\",X\n", + "X=linalg.solve(C,B)\n", + "print 'X=',X" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 2", + "language": "python", + "name": "python2" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.9" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} |