diff options
Diffstat (limited to 'Introduction_to_flight_by_J_D_Anderson/Appendix_E.ipynb')
-rwxr-xr-x | Introduction_to_flight_by_J_D_Anderson/Appendix_E.ipynb | 421 |
1 files changed, 0 insertions, 421 deletions
diff --git a/Introduction_to_flight_by_J_D_Anderson/Appendix_E.ipynb b/Introduction_to_flight_by_J_D_Anderson/Appendix_E.ipynb deleted file mode 100755 index f6035999..00000000 --- a/Introduction_to_flight_by_J_D_Anderson/Appendix_E.ipynb +++ /dev/null @@ -1,421 +0,0 @@ -{ - "cells": [ - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "# Appendix E" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 1" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Stagnation Temperature: 319.9 K\n", - "Stagnation Pressure: 187.9 KPa\n" - ] - } - ], - "source": [ - "# -*- coding: utf8 -*-\n", - "from __future__ import division\n", - "#Example: 17.1\n", - "'''Air flows in a duct at a pressure of 150 kPa with a velocity of 200 m/s. The temperature\n", - "of the air is 300 K. Determine the isentropic stagnation pressure and temperature.'''\n", - "\n", - "#Variable Declaration: \n", - "T = 300\t\t\t\t\t#Temperature of air in K\n", - "P = 150\t\t\t\t\t#Pressure of air in kPa\n", - "v = 200\t\t\t\t\t#velocity of air flow n m/s\n", - "Cp = 1.004\t\t\t\t#specific heat at constant pressure in kJ/kg\n", - "\n", - "#Calculations:\n", - "To = v**2/(2000*Cp)+T\t#stagnation temperature in K\n", - "k = 1.4\t\t \t\t#constant\n", - "Po = P*(To/T)**(k/(k-1))#stagnation pressure in kPa\n", - "\n", - "#Results:\n", - "print 'Stagnation Temperature: ',round(To,1),'K'\n", - "print 'Stagnation Pressure:',round(Po,1),'KPa'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 3" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Thrust acting in x direction: 10.68 KN\n" - ] - } - ], - "source": [ - "# -*- coding: utf8 -*-\n", - "from __future__ import division\n", - "#Example: 17.3\n", - "'''A jet engine is being tested on a test stand (Fig. 17.5). The inlet area to the compressor is\n", - "0.2 m2, and air enters the compressor at 95 kPa, 100 m/s. The pressure of the atmosphere\n", - "is 100 kPa. The exit area of the engine is 0.1 m2, and the products of combustion leave the\n", - "exit plane at a pressure of 125 kPa and a velocity of 450 m/s. The air–fuel ratio is 50 kg\n", - "air/kg fuel, and the fuel enters with a low velocity. The rate of air flow entering the engine\n", - "is 20 kg/s. Determine the thrust, Rx, on the engine.'''\n", - "\n", - "#Keys\n", - "#i = inlet\n", - "#e = exit\n", - "\n", - "#Variable Declaration: \n", - "#using momentum equation on control surface in x direction\n", - "me = 20.4\t\t#mass exiting in kg\n", - "mi = 20\t\t\t#mass entering in kg\n", - "ve = 450\t\t#exit velocity in m/s\n", - "vi = 100\t\t#exit velocity in m/s\n", - "Pi = 95\t\t\t#Pressure at inlet in kPa\n", - "Pe = 125\t\t#Pressure at exit in kPa\n", - "Po = 100\t\t#surrounding pressure in kPa\n", - "Ai = 0.2\t\t#inlet area in m**2\n", - "Ae = 0.1\t\t#exit area in m**2\n", - "\n", - "#Calculations:\n", - "Rx = (me*ve-mi*vi)/1000-(Pi-Po)*Ai+(Pe-Po)*Ae\t\t#thrust in x direction in kN\n", - "\n", - "#Results:\n", - "print 'Thrust acting in x direction: ',Rx,'KN' " - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 5" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Speed of sound at 300K: 347.2 m/s\n", - "Speed of sound at 1000K: 633.9 m/s\n" - ] - } - ], - "source": [ - "# -*- coding: utf8 -*-\n", - "from __future__ import division\n", - "from math import sqrt\n", - "#Example: 17.5\n", - "'''Determine the velocity of sound in air at 300 K and at 1000 K.'''\n", - "\n", - "#Variable Declaration: \n", - "k = 1.4\t\t\t#constant\n", - "R = 0.287\t\t#gas constant\n", - "#At 300K\n", - "T1 = 300\t\t#K\n", - "T2 = 1000\t\t#K\n", - "\n", - "#Calculations:\n", - "c1 = sqrt(k*R*T1*1000)\n", - "c2 = sqrt(k*R*T2*1000)\n", - "\n", - "#Results:\n", - "print 'Speed of sound at 300K: ',round(c1,1),'m/s'\n", - "print 'Speed of sound at 1000K: ',round(c2,1),'m/s'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 6" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Mass flow rate at the throat section: 1.0646 Kg/s\n", - "Mass flow rate at the exit section: 0.8711 Kg/s\n" - ] - } - ], - "source": [ - "# -*- coding: utf8 -*-\n", - "from __future__ import division\n", - "from math import sqrt\n", - "#Example: 17.6\n", - "'''A convergent nozzle has an exit area of 500 mm2. Air enters the nozzle with a stagnation\n", - "pressure of 1000 kPa and a stagnation temperature of 360 K. Determine the mass rate of\n", - "flow for back pressures of 800 kPa, 528 kPa, and 300 kPa, assuming isentropic flow'''\n", - "\n", - "#Variable Declaration: \n", - "k = 1.4\t\t\t\t#constant\n", - "R = 0.287\t\t\t#gas constant\n", - "To = 360\t\t\t#stagnation Temperature in K \n", - "P = 528\t\t\t\t#stagnation pressure in kPa\n", - "A = 500*10**-6\t\t#area in m**2\n", - "Me = 0.573\t\t\t#Mach number\n", - "Pe = 800\t\t\t#exit pressure in kPa\n", - "\n", - "#Calculations:\n", - "T = To*0.8333\t\t#Temperature of air in K, 0.8333 stagnation ratio from table\n", - "v = sqrt(k*R*T*1000)#velocity in m/s\n", - "d = P/(R*T)\t\t\t#stagnation density in kg/m**3\n", - "ms = d*A*v\t\t\t#mass flow rate in kg/s\n", - "Te = To*0.9381\t\t#exit temperature in K, ratio from table\n", - "ce = sqrt(k*R*Te*1000)#exit velocity of sound in m/s\n", - "ve = Me*ce\n", - "de = Pe/R/Te\n", - "mse = de*A*ve\n", - "\n", - "#Results:\n", - "print 'Mass flow rate at the throat section: ',round(ms,4),'Kg/s'\n", - "print 'Mass flow rate at the exit section: ',round(mse,4),'Kg/s'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 7" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "__When diverging section act as a nozzle__\n", - "Exit pressure: 93.9 Kpa\n", - "Exit Temperature: 183.2 K\n", - "Exit velocity: 596.1 m/s\n", - "__When diverging section act as a diffuser__\n", - "Exit pressure: 93.6 Kpa\n", - "Exit Temperature: 353.2 K\n", - "Exit velocity: 116.0 m/s\n" - ] - } - ], - "source": [ - "# -*- coding: utf8 -*-\n", - "from __future__ import division\n", - "from math import sqrt\n", - "#Example: 17.7\n", - "'''A converging-diverging nozzle has an exit area to throat area ratio of 2. Air enters this\n", - "nozzle with a stagnation pressure of 1000 kPa and a stagnation temperature of 360 K. The\n", - "throat area is 500 mm2. Determine the mass rate of flow, exit pressure, exit temperature,\n", - "exit Mach number, and exit velocity for the following conditions:\n", - "a. Sonic velocity at the throat, diverging section acting as a nozzle.\n", - "(Corresponds to point d in Fig. 17.13.)\n", - "b. Sonic velocity at the throat, diverging section acting as a diffuser.\n", - "(Corresponds to point c in Fig. 17.13.)'''\n", - "\n", - "#Variable Declaration: \n", - "Po = 1000\t\t \t#stagnation pressure in kPa\n", - "To = 360\t\t \t#stagnation temperature in K\n", - "#when diverging section acting as nozzle\n", - "Pe1 = 0.0939*Po\t\t\t#exit pressure of air in kPa\n", - "Te1 = 0.5089*To\t\t\t#exit temperature in K\n", - "k = 1.4\t\t \t\t#constant\n", - "R = 0.287\t\t \t#gas constant for air\n", - "Me = 2.197\t\t \t#mach number from table\n", - "#when diverging section act as diffuser\n", - "Me2 = 0.308\n", - "Pe2 = 0.0936*Po\t\t#exit pressure of air in kPa\n", - "Te2 = 0.9812*To\t\t#exit temperature in K\n", - "\n", - "#Calculations:\n", - "ce = sqrt(k*R*Te1*1000)\t#velocity of sound in exit section in m/s\n", - "ve1 = Me*ce\t\t\t\t#velocity of air at exit section in m/s\n", - "ce = sqrt(k*R*Te2*1000)\t\t#velocity of sound in exit section in m/s\n", - "ve2 = Me2*ce\n", - "\n", - "#Results:\n", - "print '__When diverging section act as a nozzle__'\n", - "print 'Exit pressure: ',round(Pe1,1),\"Kpa\"\n", - "print 'Exit Temperature: ',round(Te1,1),\"K\"\n", - "print 'Exit velocity: ',round(ve1,1),\"m/s\"\n", - "print '__When diverging section act as a diffuser__'\n", - "print 'Exit pressure: ',round(Pe2,1),\"Kpa\"\n", - "print 'Exit Temperature: ',round(Te2,1),\"K\"\n", - "print 'Exit velocity: ',round(ve2,1),\"m/s\"\n", - "\n" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 8" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Static Pressure in downstream: 512.7 Kpa\n", - "Static Temperature in downstream: 339.7 K\n", - "Stagnation Pressure in downstream: 630.0 Kpa\n" - ] - } - ], - "source": [ - "# -*- coding: utf8 -*-\n", - "from __future__ import division\n", - "#Example: 17.8\n", - "'''Consider the convergent-divergent nozzle of Example 17.7, in which the diverging section\n", - "acts as a supersonic nozzle (Fig. 17.16). Assume that a normal shock stands in the exit\n", - "plane of the nozzle. Determine the static pressure and temperature and the stagnation\n", - "pressure just downstream of the normal shock.'''\n", - "\n", - "#Variable Declaration:\n", - "Px = 93.9 \t\t\t#Static Pressure in Upstream(Kpa)\n", - "Tx = 183.2 \t\t\t#Static Temperature in Upstream(K)\n", - "Pox = 1000\t\t\t#Total Pressure in Upstream(Kpa)\n", - "Mx = 2.197\t\t\t#X-direction Mach No (Using table A.13)\n", - "My = 0.547\t\t\t#Y-direction Mach No (Using table A.13)\n", - "rP = 5.46\t\t\t#Py/Px (Using table A.13)\n", - "rT = 1.854\t\t\t#Ty/Tx (Using table A.13)\n", - "rPo = 0.63\t\t\t#Poy/Pox (Using table A.13)\n", - "\n", - "#Calculations:\n", - "Py = rP*Px\n", - "Ty = rT*Tx\n", - "Poy = rPo*Pox\n", - "\n", - "#Results:\n", - "print 'Static Pressure in downstream: ',round(Py,1),'Kpa'\n", - "print 'Static Temperature in downstream: ',round(Ty,1),'K'\n", - "print 'Stagnation Pressure in downstream: ',round(Poy,1),'Kpa'" - ] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [ - "## Example 9" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "collapsed": false - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Exit pressure: 669.6 Kpa\n", - "Exit temperature: 327.8 K\n", - "Exit stagnation pressure: 929.8 Kpa\n" - ] - } - ], - "source": [ - "# -*- coding: utf8 -*-\n", - "from __future__ import division\n", - "#Example: 17.9\n", - "'''Consider the convergent-divergent nozzle of Examples 17.7 and 17.8. Assume that there\n", - "is a normal shock wave standing at the point where M = 1.5. Determine the exit-plane\n", - "pressure, temperature, and Mach number. Assume isentropic flow except for the normal\n", - "shock (Fig. 17.18).'''\n", - "\n", - "#Key\n", - "#x = inlet\n", - "#y = exit\n", - "\n", - "#Variable Declaration: \n", - "Mx = 1.5\t\t\t\t#mach number for inlet\n", - "My = 0.7011\t\t\t\t#mach number for exit\n", - "Px = 272.4\t\t\t\t#inlet pressure in kPa\n", - "Tx = 248.3\t\t\t\t#inlet temperature in K\n", - "Pox = 1000\t\t\t\t#stagnation pressure for inlet\n", - "\n", - "#Calculations:\n", - "Py = 2.4583*Px\t\t\t#Exit Pressure in kPa\n", - "Ty = 1.320*Tx\t\t\t#Exit temperature in K\n", - "Poy = 0.9298*Pox\t\t#Exit pressure in kPa\n", - "\n", - "#Results:\n", - "print 'Exit pressure: ',round(Py,1),\"Kpa\"\n", - "print 'Exit temperature: ',round(Ty,1),\"K\"\n", - "print 'Exit stagnation pressure: ',round(Poy,1),\"Kpa\"" - ] - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 2", - "language": "python", - "name": "python2" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 0 -} |