summaryrefslogtreecommitdiff
path: root/Introduction_to_Power_Electronics_by_V._Jagannathan/chapter4.ipynb
diff options
context:
space:
mode:
Diffstat (limited to 'Introduction_to_Power_Electronics_by_V._Jagannathan/chapter4.ipynb')
-rw-r--r--Introduction_to_Power_Electronics_by_V._Jagannathan/chapter4.ipynb327
1 files changed, 327 insertions, 0 deletions
diff --git a/Introduction_to_Power_Electronics_by_V._Jagannathan/chapter4.ipynb b/Introduction_to_Power_Electronics_by_V._Jagannathan/chapter4.ipynb
new file mode 100644
index 00000000..975b27ec
--- /dev/null
+++ b/Introduction_to_Power_Electronics_by_V._Jagannathan/chapter4.ipynb
@@ -0,0 +1,327 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "# Chapter 4 - AC to AC Converters"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 4.1 page 158"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " rms load voltage = 101.70 V\n",
+ "\n",
+ " rms load current = 20.34 A\n",
+ "\n",
+ " rms thyristor current = 14.38 A\n",
+ "\n",
+ " input power factor = 0.442 \n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import sqrt,pi,sin\n",
+ "R=5 # ohm\n",
+ "Vs=230 # V\n",
+ "f=50 # Hz\n",
+ "alpha = 120 # degree\n",
+ "\n",
+ "Vor=Vs*sqrt(1/pi*(pi-alpha*pi/180+sin(2*alpha*pi/180)/2)) # V\n",
+ "print '\\n rms load voltage = %.2f V'%( Vor)\n",
+ "Ior=Vor/R # A\n",
+ "print '\\n rms load current = %.2f A'%( Ior)\n",
+ "Irms=Ior/sqrt(2) # A\n",
+ "print '\\n rms thyristor current = %.2f A'%( Irms)\n",
+ "pf=sqrt(1/pi*((pi-alpha*pi/180)+sin(2*alpha*pi/180)/2)) # power factor\n",
+ "print '\\n input power factor = %.3f '%(pf)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 4.2 page 158"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 2,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " (a) rms output voltage = 138 V\n",
+ "\n",
+ " (b) Power output to load = 1904.4 W\n",
+ "\n",
+ " (c) Power input to regulator = 1904.4 W\n",
+ "\n",
+ " (d) input power factor = 0.6 \n",
+ "\n",
+ " (e) average scr current = 3.727 A\n",
+ "\n",
+ " rms scr current = 9.758 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import sqrt,pi,sin\n",
+ "R=10 # ohm\n",
+ "Vs=230 # V\n",
+ "f=50 # Hz\n",
+ "nc=18 # conducting cycles\n",
+ "noff=32 # off cycles\n",
+ "\n",
+ "k=nc/(nc+noff) # duty ratio\n",
+ "Vor=Vs*sqrt(k) # V\n",
+ "Po=Vor**2/R # W\n",
+ "Pi=Po # W (losses are negligble)\n",
+ "Ior=Vor/R # A\n",
+ "pf=Po/Vs/Ior # W\n",
+ "Im=Vs*sqrt(2)/R # A\n",
+ "Irms=Im*sqrt(k)/2 # A\n",
+ "Iav=k*Im/pi # A\n",
+ "print '\\n (a) rms output voltage = %.0f V'%( Vor)\n",
+ "print '\\n (b) Power output to load = %.1f W'%( Po)\n",
+ "print '\\n (c) Power input to regulator = %.1f W'%( Pi)\n",
+ "print '\\n (d) input power factor = %.1f '%(pf)\n",
+ "print '\\n (e) average scr current = %.3f A'%( Iav)\n",
+ "print '\\n rms scr current = %.3f A'%( Irms)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 4.3 page 159"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 3,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " rms load voltage = 162.63 V\n",
+ "\n",
+ " rms load current = 16.26 A\n",
+ "\n",
+ " power input = 2645.00 W\n",
+ "\n",
+ " load power factor = 0.7 \n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import sqrt,pi,sin\n",
+ "R=10 # ohm\n",
+ "Vs=230 # V\n",
+ "f=50 # Hz\n",
+ "alpha = 90 # degree\n",
+ "\n",
+ "Vor=Vs*sqrt(1/pi*(pi-alpha*pi/180+sin(2*alpha*pi/180)/2)) # V\n",
+ "Ior=Vor/R # A\n",
+ "P=Ior**2*R # W\n",
+ "pf=Vor/Vs # power factor\n",
+ "print '\\n rms load voltage = %.2f V'%( Vor)\n",
+ "print '\\n rms load current = %.2f A'%( Ior)\n",
+ "print '\\n power input = %.2f W'%( P)\n",
+ "print '\\n load power factor = %.1f '%(pf)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 4.4 page 160"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 4,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " rms load voltage = 219.30 V\n",
+ "\n",
+ " rms load current = 7.31 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import sqrt,pi,sin\n",
+ "\n",
+ "R=30 # ohm\n",
+ "Vs=230 # V\n",
+ "f=50 # Hz\n",
+ "alpha = 45 # degree\n",
+ "\n",
+ "Vor=Vs*sqrt(1/pi*(pi-alpha*pi/180+sin(2*alpha*pi/180)/2)) # V\n",
+ "Ior=Vor/R # A\n",
+ "print '\\n rms load voltage = %.2f V'%( Vor)\n",
+ "print '\\n rms load current = %.2f A'%( Ior)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 4.5 page 160"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 5,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " max load voltage = 230.00 V\n",
+ "\n",
+ " max load current = 16.263 A\n",
+ "\n",
+ " range of delay angle = 0 to 45\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import sqrt,pi,sin,tan\n",
+ "\n",
+ "R=10 # ohm\n",
+ "Vs=230 # V\n",
+ "f=50 # Hz\n",
+ "fi = 45 # degree\n",
+ "\n",
+ "Vmax=Vs # V(max supply voltage)\n",
+ "XL=R*tan(fi*pi/180) # ohm\n",
+ "Z=XL*sqrt(2) # ohm\n",
+ "Imax=Vs/Z # A\n",
+ "\n",
+ "print '\\n max load voltage = %.2f V'%( Vmax)\n",
+ "print '\\n max load current = %.3f A'%( Imax)\n",
+ "print '\\n range of delay angle = %d to %d'%(0,fi)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "metadata": {},
+ "source": [
+ "## Ex 4.7 page 161"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 6,
+ "metadata": {
+ "collapsed": false
+ },
+ "outputs": [
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "\n",
+ " (i) control range of firing angle = 53.13 to pi\n",
+ "\n",
+ " (ii) max rms load current = 46 A\n",
+ "\n",
+ " (iii) max power input to load = 6348 W\n",
+ "\n",
+ " (iv) max power factor = 0.6 \n",
+ "\n",
+ " (v) max rms thyristor current = 32.527 A\n",
+ "\n",
+ " max average thyristor current = 20.718 A\n"
+ ]
+ }
+ ],
+ "source": [
+ "from __future__ import division\n",
+ "from math import sqrt,pi,sin,atan\n",
+ "\n",
+ "R=3 # ohm\n",
+ "wL=4 # ohm\n",
+ "Vs=230 # V\n",
+ "f=50 # Hz\n",
+ "\n",
+ "fi=atan(wL/R)*180/pi # degree\n",
+ "print '\\n (i) control range of firing angle = %.2f to pi'%(fi)\n",
+ "Imax=Vs/sqrt(R**2+wL**2) # A\n",
+ "print '\\n (ii) max rms load current = %.f A'%( Imax)\n",
+ "Pmax=Imax**2*R # W\n",
+ "print '\\n (iii) max power input to load = %.f W'%( Pmax)\n",
+ "pf_max=Pmax/Vs/Imax # power factor\n",
+ "print '\\n (iv) max power factor = %.1f '%( pf_max)\n",
+ "Ithrms=Imax/sqrt(2) # A\n",
+ "Ithav=Ithrms/1.57 # A\n",
+ "print '\\n (v) max rms thyristor current = %.3f A'%( Ithrms)\n",
+ "print '\\n max average thyristor current = %.3f A'%( Ithav)"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 2",
+ "language": "python",
+ "name": "python2"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 2
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython2",
+ "version": "2.7.9"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 0
+}